24/7 Space News
STELLAR CHEMISTRY
ComPair gamma-ray hunting mission prepares for balloon flight
Team members work on the ComPair balloon instrument before it begins thermal vacuum chamber testing at NASA's Goddard Space Flight Center in Greenbelt, Maryland. ComPair project manager Regina Caputo (front right), graduate student Nicholas Kirschner (George Washington University, left), and research scientist Nicholas Cannady (University of Maryland Baltimore County, rear) examine ComPair's various components to determine what needs to be "harnessed," or connected via cable to power systems and the onboard computer. Credits: NASA's Goddard Space Flight Center/Scott Wiessinger
ComPair gamma-ray hunting mission prepares for balloon flight
by Jeanette Kazmierczak for GSFC News
Greenbelt MD (SPX) Jul 21, 2023

Engineers and scientists have shipped NASA's ComPair instrument to Fort Sumner, New Mexico, ahead of its scheduled August flight early in NASA's 2023 fall balloon campaign.

ComPair's goal is to test new technologies for studying gamma rays, the highest-energy form of light. It was assembled and tested at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"The gamma-ray energy range we're targeting with ComPair isn't well covered by current observatories," said Carolyn Kierans, the instrument's principal investigator at Goddard. "We hope that after a successful balloon test flight, future versions of the technologies will be used in space-based missions."

ComPair is designed to detect gamma rays with energies between 200,000 and 20 million electron volts. (For comparison, the energy of visible light is 2 to 3 electron volts.) Supernovae and gamma-ray bursts, the most powerful explosions in the cosmos, glow brightest in this range, as do the most massive and distant active galaxies, which are powered by supermassive black holes. Scientists know this because they see a fraction of the light emitted by these galaxies with NASA's Fermi Gamma-ray Space Telescope, which observes higher-energy gamma rays.

ComPair gets its name from the two ways it detects and measures gamma rays: Compton scattering and pair production. Compton scattering occurs when light hits a particle, such as an electron, and transfers some energy to it. Pair production happens when a gamma ray grazes the nucleus of an atom. The interaction converts the gamma ray into a pair of particles - an electron and its antimatter counterpart, a positron.

The ComPair instrument has four major components:

+ A tracker containing 10 layers of silicon detectors that determines the positions of incoming gamma rays.

+ A high-resolution calorimeter that precisely measures lower-energy Compton-scattered gamma rays.

+ Another calorimeter that measures the higher-energies of electron-positron pairs.

+ An anticoincidence detector that notes the entry of high-energy charged particles called cosmic rays, allowing ComPair's other instruments to ignore them.

The mission team assembled all the components and tested them in a large thermal vacuum chamber at Goddard to assess how they'll function at balloon altitudes. The next step is to fly the instrument. The flight will carry ComPair to a height of about 133,000 feet (40,000 meters), or nearly four times the cruising altitude of a commercial airliner.

ComPair will piggyback with one of the primary balloon payloads that will fly during NASA's annual Fort Sumner balloon campaign. NASA's scientific balloons offer frequent, low-cost access to near-space to conduct scientific investigations and technology maturation in fields such as astrophysics, heliophysics, and atmospheric research, as well as training for the next generation of leaders in engineering and science.

ComPair is a collaboration among Goddard, the Naval Research Laboratory in Washington, Brookhaven National Laboratory in Upton, New York, and Los Alamos National Laboratory in New Mexico.

Related Links
Columbia Scientific Balloon Facility
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
UAH researchers find brightest gamma-ray burst ever detected
Huntsville AL (SPX) Jul 19, 2023
The University of Alabama in Huntsville (UAH) has announced that three researchers associated with the UAH Center for Space Plasma and Aeronomic Research (CSPAR) have discovered a gamma-ray burst (GRB) approximately 2.4 billion light-years away in the constellation Sagitta that ranks as the brightest ever observed. Believed to have been triggered by collapse of a massive star, it is accompanied by a supernova explosion, giving birth to a black hole. Dr. Peter Veres, an assistant professor with CSP ... read more

STELLAR CHEMISTRY
In new space race, scientists propose geoarchaeology can aid in preserving space heritage

Geophysics student employs 800-year-old method for Lunar GPS system

NASA's Bill Nelson to discuss bilateral cooperation in South America

On space, poll shows most Americans support NASA's role, U.S. presence

STELLAR CHEMISTRY
NASA picks Lockheed Martin to develop nuclear rocket

Kuaizhou 1A launches satellites into orbit

Rocket Lab set to boost Capella's satellite constellation with upcoming launch

World's first methane-fueled rocket makes history, courtesy of LandSpace and GCL

STELLAR CHEMISTRY
Sleeping the Sol Away: Sol 3894

Unveiling Mars' Past: Olympus Mons as a Gigantic Volcanic Isle

Perseverance sees Mars in a new light

Sols 3895-3897: Navigating Through the Crater Cluster

STELLAR CHEMISTRY
China's Space Station Opens Doors to Global Scientific Community

China's Lunar Mission targets manned landing by 2030

Shenzhou XVI crew set to conduct their first EVA

Timeline unveiled for China's advanced manned spacecraft's inaugural flight

STELLAR CHEMISTRY
From AI to Nuclear: UK launches Strategic Plan for Future Space Exploration

Future of Satellite Internet: OneWeb vs Starlink

Successful entry into service of the multi-mission EUTELSAT 10B satellite

Amazon invests $120 million in internet satellite facility

STELLAR CHEMISTRY
Goddard, Wallops Engineers Test Printed Electronics in Space

Optimum Technologies unveils innovative spacecraft facility in Northern Virginia

Revolutionary materials and techniques transform aircraft construction

Billions of nanoplastics released when microwaving baby food containers

STELLAR CHEMISTRY
Water discovered in rocky planet-forming zone offers clues on habitability

NASA lab hopes to find life's building blocks in asteroid sample

New study reveals Roman Telescope could find 400 Earth-mass rogue planets

Does this exoplanet have a sibling sharing the same orbit

STELLAR CHEMISTRY
NASA's Juno Is Getting Ever Closer to Jupiter's Moon Io

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.