. | . |
Collective electrostatic effects are used to intentionally manipulate material properties by Staff Writers Styria, Austria (SPX) May 17, 2017
Computational materials design is traditionally used to improve and further develop already existing materials. Simulations grant a deep insight into the quantum mechanical effects which determine material properties. Egbert Zojer and his team at the Institute of Solid State Physics of TU Graz go a decisive step beyond that: they use computer simulations to propose an entirely new concept for controlling the electronic properties of materials. Potentially disturbing influences arising from the regular arrangement of polar elements, so-called collective electrostatic effects, are used by the research group to intentionally manipulate material properties. That this radically new approach also works for three-dimensional materials has been demonstrated by the Graz team in Advanced Materials, which according to Google Scholar is internationally the most important journal in the field of materials research.
Manipulation of the energetic materials landscape This topic has been in the focus of the research of the Zojer group already for some time. The first step was the electrostatic design of molecular monolayers, for example on gold electrodes. Experiments have shown that the predicted energy shifts within the layers actually take place and that charge transport through monolayers can be deliberately modulated. Also, the electronic states of two-dimensional materials, such as graphene, can be controlled by means of collective electrostatic effects. In the publication in Advanced Materials, doctoral student Veronika Obersteiner, Egbert Zojer and other colleagues from the team demonstrate the full potential of the concept by extending it to three-dimensional materials. "For the example of three-dimensional covalent organic networks, we show how - by means of collective electrostatic effects - the energy landscape within three-dimensional bulk material can be manipulated such that spatially confined pathways for electrons and holes can be realised. In this way charge carriers can, for instance, be separated and the electronic properties of the material can be designed as desired," says Zojer. The concept is especially interesting for solar cells. In classical organic solar cells, chemically different building blocks, so-called donors and acceptors, are used to separate the photogenerated electron-hole pairs. In the approach proposed here, the necessary local shift of energy levels occurs due to the periodic arrangement of polar groups. The semiconducting areas onto which the electrons and holes are shifted are chemically identical. "In this way, we can quasi-continuously and efficiently fine tune the energy levels by varying the dipole density. This work is the climax to our intensive research on the electrostatic design of materials," says Zojer. Electrostatic design in 3D systems can also enable the realization of complex quantum structures, such as quantum-cascades and quantum-checkerboards. "Only the imagination of the materials designer can set limits to our concept," Zojer and Obersteiner enthuse in unison. Computational operations for this paper had been executed at the Vienna Scientific Cluster (VSC), Austria's highest performing supercomputer and a joint operation of the partner universities TU Wien, TU Graz, University of Vienna, Boku Vienna and University of Innsbruck. This work is anchored in the Field of Expertise "Advanced Materials Science", one of five research foci of TU Graz.
Research Report: "Electrostatic Design of 3D Covalent Organic Networks "
Berkeley CA (SPX) May 17, 2017 Scientists have greatly expanded the range of functional temperatures for ferroelectrics, a key material used in a variety of everyday applications, by creating the first-ever polarization gradient in a thin film. The achievement, reported May 10 in Nature Communications by researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), paves the way for dev ... read more Related Links Graz University of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |