. 24/7 Space News .
TECTONICS
Cold production of new seafloor
by Staff Writers
Kiel, Germany (SPX) May 25, 2018

This is the launch of an ocean bottom seismometer. With these instruments record seismic waves at the sea floor.

A mountain range with a total length of 65,000 kilometers runs through all the oceans. It marks the boundaries of tectonic plates. Through the gap between the plates material from the Earth's interior emerges, forming new seafloor, building up the submarine mountains and spreading the plates apart.

Very often, these mid-ocean ridges are described as a huge, elongated volcano. But this image is only partly correct, because the material forming the new seafloor is not always magmatic. At some spreading centres material from the Earth's mantle reaches the surface without being melted. The proportion of seabed formed this has been previously unknown.

Scientists from the Universities of Kiel (Germany), Austin (Texas, USA) and Durham (Great Britain) have now published data in the international journal Nature Geoscience that, for the first time, allow a detailed estimation on how much seafloor is formed by mantle material without magmatic processes.

"This phenomenon occurs especially where the seabed spreads at paces of less than two centimeters per year," explains Prof. Dr. Ingo Grevemeyer from the GEOMAR Helmholtz Centre for Ocean Research Kiel, lead author of the study.

One of these zones is located in the Cayman Trough south of the island of Grand Cayman in the Caribbean. In 2015, the researchers used the German research vessel METEOR to investigate the seafloor seismically, i.e. by using sound waves.

Sound signals sent through different rocks or sediment layers, are being reflected and refracted in different ways by each layer. Rock, which has been melted and solidified on the seabed, has a different signature in the seismic signal than rock from the Earth's mantle, which has not been melted.

But scientists had a problem so far: The contact with the seawater changes the mantle rocks.

"After this process called serpentinisation mantle rocks are barely distinguishable from magmatic rocks in seismic data," says Professor Grevemeyer. Until now, mantle rock on the seabed could only be detected by taking samples directly from the seafloor and analyzing them in the laboratory.

"But that way you only get information about a tiny spot. A large-scale or even in-depth information on the composition of the seabed cannot be achieved," says Grevemeyer.

However, during the expedition in 2015, the team not only used the energy of ordinary sound waves - it also detected so-called shear waves, which occur only in solid materials. They could be recorded very clearly thanks to a clever selection of measuring points.

From the ratio of the speed of both types of waves, the scientists were able to differentiate mantle material from magmatic material. "So we could prove for the first time with seismic methods that up to 25 percent of the young ocean floor is not magmatic at the ultra-slow spreading centre in the Cayman trough," says Ingo Grevemeyer.

Since there are similar spreading centres in other regions, such as the Arctic or Indian Ocean, these results are of great importance for the general idea about the global composition of the seabed. "This is relevant, if we want to create global models on the interactions between seabed and seawater or on processes of plate tectonics," summarizes Professor Grevemeyer.

Research paper


Related Links
Helmholtz Centre for Ocean Research Kiel
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
Ohio professor identifies hidden clues to ancient supercontinents, confirms Pannotia
Athens OH (SPX) Apr 05, 2018
An Ohio University geologist who first proposed the now-accepted supercontinent cycle theory in the 1980s has rallied to the cause of one of those supercontinents, Pannotia, that is in danger of being overlooked. Dr. Damian Nance, Distinguished Professor of Geological Sciences, said the supercontinent cycle is known to have had a profound influence on the course of Earth history and the evolution of its oceans, atmosphere and biosphere, and is now thought to be, in addition, the dominant influence ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
US May Order Russian Soyuz Spacecraft to Fly Astronauts to ISS in 2020 - Source

Cement, extreme cold experiments head to space aboard Cygnus cargo ship

US spacewalkers swap, check coolers 'Leaky' and 'Frosty'

NASA Invites Media to SLS Industry Day

TECTONICS
US indirectly confirms existence of Russia's hypersonic weapons

Chinese private firm launches first space rocket

RL10 engine to power ULA's new Vulcan Centaur Upper Stage

NASA's emerging microgap cooling to be tested aboard New Shepard

TECTONICS
NASA's Curiosity Rover Aims to Get Its Rhythm Back

Sierra Nevada Corporation Hardware on NASA's Mars InSight Mission

Dorset as model to help find traces of life on Mars

Opportunity team continues studies on origin of 'Perseverance Valley'

TECTONICS
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

TECTONICS
Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

TECTONICS
Astonishing effect enables better palladium catalysts

Waterloo chemists create faster and more efficient way to process information

Supercomputing the emergence of material behavior

Keep the light off: A material with improved mechanical performance in the dark

TECTONICS
Orbital variations can trigger 'snowball states' on exoplanets

Amateur astronomer's data helps scientists discover a new exoplanet

Scientists crack how primordial life on Earth might have replicated itself

Atmospheric seasons could signal alien life

TECTONICS
Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon

Old Data Reveal New Evidence of Europa Plumes

New views of Jupiter" showcases swirling clouds on giant planet

Fresh results from NASA's Galileo spacecraft 20 years on









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.