. 24/7 Space News .
Cluster Captures A New Impact Of Solar Outbursts

While the Sun is continuously losing a small fraction of its mass via the solar wind, a CME is a massive ejection of matter at high speed, carrying up to 10 thousand million tons of charged particles, or plasma, out into the Solar System. Most CMEs travelling towards Earth are harmless, but some can affect orbiting satellites or even power grids. Understanding how CMEs impact the Earth's magnetic environment - and consequently space- and ground-based technologies - is an active field of research.
by Staff Writers
Paris, France (SPX) Nov 22, 2007
Solar outbursts, known as Coronal Mass Ejections (CME), can represent a hazard to astronauts, disrupt communications with satellites and affect the magnetic environment of the Earth, called the magnetosphere. A recent article provides new evidence that CMEs can also impact the acceleration of matter near the border of the magnetosphere, to speeds higher than 1000 kms-1.

This study compares observations from the four satellites of the ESA/NASA Cluster mission with global simulations of the magnetosphere. The acceleration process found, which is interestingly not related to magnetic reconnection, predicts an altered coupling of these high-speed flows with the magnetosphere.

On 11 January 1997, the AT and T Telstar 401 satellite suddenly fell silent, cutting TV coverage to millions of U.S. viewers. Six days later, after unsuccessful attempts to reestablish contact, the company declared it permanently out of service. A $200 million satellite had been short circuited. The most likely cause of this failure is that Telstar 401 was hit by a massive cloud of charged particles coming from the Sun, known as a Coronal Mass Ejection (CME, see Animation 1).

While the Sun is continuously losing a small fraction of its mass via the solar wind, a CME is a massive ejection of matter at high speed, carrying up to 10 thousand million tons of charged particles, or plasma, out into the Solar System. Most CMEs travelling towards Earth are harmless, but some can affect orbiting satellites or even power grids. Understanding how CMEs impact the Earth's magnetic environment - and consequently space- and ground-based technologies - is an active field of research.

On 25 November 2001, during the passage of a CME at Earth, the four Cluster satellites were skimming the border of the magnetosphere, the magnetopause, in a region called the magnetosheath, when they detected accelerated plasma up to speeds of 1040 kms-1, while the ambient solar wind speed was only 650 kms-1 Strong bulk plasma accelerations have been observed before with or without the presence of a CME. Usually, these are taken to be the indicator of the occurrence of magnetic reconnection, a physical process by which solar and terrestrial magnetic field lines get mixed up and accelerate plasma. But on 25 November 2001, this was not the case.

By combining Cluster observations on that day with related global MagnetoHydroDynamics (MHD) simulations of the magnetosphere, a new study reveals that solar wind conditions characteristic of most CMEs (high magnetic field but modest densities) lead to a mechanism of strong plasma acceleration other than magnetic reconnection. During the passage at Earth of such CMEs, solar wind magnetic field lines get stuck on the front of the magnetosphere before sliding sideways and accelerating plasma in the fashion of a "magnetic slingshot" "We report new and unambiguous proof that the strong bulk plasma acceleration observed on 25 November 2001 by the Cluster satellites in the near-Earth environment was not the result of magnetic reconnection," wrote Dr. Benoit Lavraud and colleagues in their article published 18 July 2007 in Geophysical Research Letters. Dr. Lavraud is a scientist at Los Alamos National Laboratory, New Mexico, USA.

The fact that such large flows occur during a CME passage at Earth implies some alterations of solar wind-magnetosphere coupling that are still to be fully determined. The passing CME may for instance increase wavy/viscous interactions at the magnetospheric boundaries and lead to giant spiral auroral features, e.g. as reported this year by Rosenqvist and colleagues (Swedish Institute of Space Physics, Uppsala, Sweden).

"The tremendous progress made by global MHD simulations of the magnetosphere over the past few years has significantly aided our understanding of the Earth's plasma environment. This result neatly illustrates the mutual benefit of comparing global MHD simulation results together with measurements provided by the four Cluster satellites," comments Philippe Escoubet, Cluster and Double Star project scientist at the European Space Agency.

Lavraud, B., J. E. Borovsky, A. J. Ridley, E. W. Pogue, M. F. Thomsen, H. R�me, A. N. Fazakerley, and E. A. Lucek (2007), Strong bulk plasma acceleration in Earth's magnetosheath: a magnetic slingshot effect?, Geophys. Res. Lett., 34, L14102, doi:10.1029/2007GL030024.

Community
Email This Article
Comment On This Article

Related Links
Solar Science News at SpaceDaily



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


LockMart Delivers HMI To Goddard Space Flight Center For NASA's Solar Dynamics Observatory
Palo Alto CA (SPX) Nov 16, 2007
The Helioseismic and Magnetic Imager (HMI), an instrument for NASA's Solar Dynamics Observatory (SDO), has been delivered to NASA's GoddardSpacecraft Centerfor integration on SDO, which is scheduled to launch in December 2008. The HMI was designed in collaboration with Professor Philip Scherrer, HMI Principal Investigator, and other scientists at Stanford University. The instrument was built at the Solar and Astrophysics Laboratory of the Lockheed Martin [NYSE: LMT] Advanced Technology Center (ATC) in Palo Alto.







  • Jogging To Mars
  • SPACEHAB Supporting Key Milestones Under NASA Space Act Agreement
  • Brazil to invest 28 bln dollars in science and technology: Lula
  • Orbital Outfitters Debuts IS3C - First-Ever Fully Functional Commercial Pressure Spacesuit

  • Questioning Martian Life
  • Mars' Molten Past
  • Mars Express Creates First Global Map Of Martian Ionosphere
  • Rover Finds Way To Brush Rock Surfaces Despite Setbacks

  • Thuraya-3 Satellite Launch Delayed Again
  • Site Thefts Place Russian Rocket Launches Under Threat In French Guiana
  • Russia To Launch Manned Spacecraft From New Site In 2018
  • Lockheed Martin-Built Sirius 4 Launched Successfully From Baikonur Cosmodrome

  • Rosetta: Earth's True Colours
  • Northrop Grumman-Built Hyperion Imager Celebrates Seventh Anniversary On-Orbit
  • TRMM Turns Ten - Studying Precipitation From Space
  • Rosetta: OSIRIS' View Of Earth By Night

  • Data For The Next Generations
  • Goddard Instrument Makes Cover Of Science
  • Checking Out New Horizons
  • Pluto-Bound New Horizons Sees Changes In Jupiter System

  • Astronomers Discover Stars With Carbon Atmospheres
  • Watching Galaxies Grow Old Gracefully
  • Record-busting supernova prompts new ideas on death of stars
  • Cosmological Data Affected By An Unexpected Source Of Radiation In Interstellar Space

  • SKorea to join Asian space race: science ministry
  • Astronomers Say Moons Like Ours Are Uncommon
  • Chang'e-1 Opens Facilities For Data Transmission
  • Moon Rocket Parachute Tests A Success

  • Raytheon Completes Test To Begin Improving Accuracy Of GPS Signals Over India
  • German chancellor says satnav financing plan to be drafted soon
  • GPS Chipset Shipments To Grow From 110 Million To 725 Million Units In 2011
  • Providence Health And Services Chooses WWT and AeroScout For Wireless Asset Tracking Solution

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement