. 24/7 Space News .
STELLAR CHEMISTRY
Closing the gap on the missing lithium
by Staff Writers
Tokyo, Japan (SPX) Jul 02, 2021

As a beam of beryllium comes in from the left, the deuteron Trojan horse intercepts it at the target and delivers its neutron soldier. This allows the decay products of the beryllium and neutron reactions to be captured by a curved array of six detectors on the right.

There is a significant discrepancy between theoretical and observed amounts of lithium in our universe. This is known as the cosmological lithium problem, and it has plagued cosmologists for decades. Now, researchers have reduced this discrepancy by around 10%, thanks to a new experiment on the nuclear processes responsible for the creation of lithium. This research could point the way to a more complete understanding of the early universe.

There is a famous saying that, "In theory, theory and practice are the same. In practice, they are not." This holds true in every academic domain, but it's especially common in cosmology, the study of the entire universe, where what we think we should see and what we really see doesn't always match up.

This is largely because many cosmological phenomena are difficult to study due to inaccessibility. Cosmological phenomena are usually out of our reach because of the extreme distances involved, or often they have occurred before the human brain had even evolved to worry about them in the first place - such is the case with the big bang.

Project Assistant Professor Seiya Hayakawa and Lecturer Hidetoshi Yamaguchi from the Center for Nuclear Study at the University of Tokyo, and their international team are especially interested in one area of cosmology where theory and observation are very misaligned, and that is the issue of the missing lithium, the cosmological lithium problem (CLP).

In a nutshell, theory predicts that in the minutes following the big bang that created all matter in the cosmos, there should be an abundance of lithium around three times greater than what we actually observe. But Hayakawa and his team accounted for some of this discrepancy and have thus paved the way for research that may one day resolve it entirely.

"13.7 billion years ago, as matter coalesced from the energy of the big bang, common light elements we all recognize - hydrogen, helium, lithium and beryllium - formed in a process we call Big Bang nucleosynthesis (BBN)," said Hayakawa.

"However, BBN is not a straightforward chain of events where one thing becomes another in sequence; it is actually a complex web of processes where a jumble of protons and neutrons builds up atomic nuclei, and some of these decay into other nuclei.

"For example, the abundance of one form of lithium, or isotope - lithium-7 - mostly results from the production and decay of beryllium-7. But it has either been overestimated in theory, underobserved in reality, or a combination of the two. This needs to be resolved in order to really understand what took place way back then."

Lithium-7 is the most common isotope of lithium, accounting for 92.5% of all observed. However, even though the accepted models of BBN predict the relative amounts of all elements involved in BBN with extreme accuracy, the expected amount of lithium-7 is around three times greater than what is actually observed.

This means there is a gap in our knowledge about the formation of the early universe. There are several theoretical and observational approaches which aim to resolve this, but Hayakawa and his team simulated conditions during BBN using particle beams, detectors and an observational method known as the Trojan horse.

"We scrutinized more than ever before one of the BBN reactions, where beryllium-7 and a neutron decay into lithium-7 and a proton. The resulting levels of lithium-7 abundance were slightly lower than anticipated, about 10% lower," said Hayakawa.

"This is a very difficult reaction to observe since beryllium-7 and neutrons are unstable. So we used deuteron, a hydrogen nucleus with an extra neutron, as a vessel to smuggle a neutron into a beryllium-7 beam without disturbing it.

"This is a unique technique, developed by an Italian group we collaborate with, in which the deuteron is like the Trojan horse in Greek myth, and the neutron is the soldier who sneaks into the impregnable city of Troy without tipping off the guards (destabilizing the sample). Thanks to the new experimental result, we can offer future theoretical researchers a slightly less daunting task when trying to resolve the CLP."

Research Report: "Constraining the Primordial Lithium Abundance: New Cross-Section Measurement of the 7Be + n Reactions Updates the Total 7Be Destruction Rate"


Related Links
University Of Tokyo
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A white dwarf living on the edge
Maunakea HI (SPX) Jul 01, 2021
Astronomers have discovered the smallest and most massive white dwarf ever seen. The smoldering cinder, which formed when two less massive white dwarfs merged, is heavy, "packing a mass greater than that of our Sun into a body about the size of our Moon," says Ilaria Caiazzo, the Sherman Fairchild Postdoctoral Scholar Research Associate in Theoretical Astrophysics at Caltech and lead author of the new study appearing in the July 1 issue of the journal Nature. "It may seem counterintuitive, but smaller w ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia races Tom Cruise and Musk for first movie in space

Rogue Space and Orbital Assembly want to lease 2 Laura Orbot spacecraft

Billionaire blast off: Richard Branson plans space trip ahead of rival Bezos

Trailblazing woman pilot, 82, to fly into space with Bezos

STELLAR CHEMISTRY
SpaceX launches 88 satellites on rideshare mission

After 60 years, nuclear power for spaceflight is still tried and true

Gilmour Space rockets ahead with new funding round

Second iteration of successful Vanguard Incubation Process approaches Summit

STELLAR CHEMISTRY
Japan planning soil sampling mission to Mars' Moon Phobos

Perseverance Mars rover to use AutoNav in new self driving mode

Scientists closer to explaining Mars methane mystery

Insight Mars Lander may die this year due to dust

STELLAR CHEMISTRY
China is using mythology and sci-fi to sell its space program to the world

China building new space environment monitoring station

How does China's urine recycling system work in space

Xi lauds 'new horizon' for humanity in space chat with astronauts

STELLAR CHEMISTRY
Russian rocket launches UK telecom satellites

Retro meets retrofit

OneWeb and BT to explore rural connectivity solutions for UK

New funding from UK Space Agency will kickstart space technology projects

STELLAR CHEMISTRY
China begins construction of new survey telescope to detect space debris

A new chapter for space sustainability

Reprogrammable satellite shipped to launch site

Amazon stays atop fast-growing cloud computing market: survey

STELLAR CHEMISTRY
Are we missing other Earths

Unique exoplanet photobombs Cheops study of nearby star system

Collection of starshade research helps advance exoplanet imaging by space telescopes

Scientists use stellar mass to link exoplanets to planet-forming disks

STELLAR CHEMISTRY
Giant comet found in outer solar system by Dark Energy Survey

Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.