![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Thuwal, Saudi Arabia (SPX) Dec 22, 2016
Tiny clusters of silver atoms arranged with atomic level precision could become more versatile and useful due to a simpler way to hold them together. The nanoclusters assemble with the assistance of carbon-based organic ligands that form a shell around the metal atoms. "Until now, most ligands have been big molecules that bond really strongly to the cluster and make its surface inaccessible to other chemical species," explained Osman Bakr, KAUST associate professor of material science and engineering. The smaller ligands developed at KAUST open new opportunities in nanocluster design and should broaden the chemical uses for such clusters1. The ligands developed by Bakr and his team are known as hydrides because they have negatively charged hydrogen atoms (or hydride ions) in direct contact with the metal surface. The tiny hydride ions interact with small phosphorus-containing organic molecules known as phosphines to create a shell that protects and stabilizes the cluster. Crucially, nanoclusters crystallize readily, allowing their structure to be precisely analyzed. Using this structural analysis to experiment with ligand design allows the properties of a nanocluster to be modified with atom-by-atom control. One very promising potential application for nanoclusters is their use as catalysts to accelerate specific chemical reactions. The smaller ligands allow greater accessibility that widens the scope for reacting chemicals to reach the nanocluster's catalytic surface. The increased availability of that surface also allows other molecules to be deliberately added to assist with catalysis. To design new catalysts, researchers need to know more about how they work, which is a major motivation for the KAUST team's work. "These atomically precise nanoclusters are the key to understanding catalysis because, as we alter their size and shape, we can unlock the way in which catalysis occurs," said Bakr. Because the electrons of the metal atoms are shared across the entire cluster, they also have unique optical and electronic properties. This allows the clusters to absorb light of many wavelengths and to remain in an energetically excited state for a long time. Bar's group's members are pioneers in giving silver nanoclusters properties that were previously only seen in the much more expensive clusters made of gold. This could be vital for transferring research findings into economically viable applications. Bakr noted, "The next challenge is to see if we can apply these innovations to other metals and greatly widen their usefulness."
![]() ![]()
Related Links King Abdullah University of Science and Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |