. | . |
Clocking electron movements inside an atom by Staff Writers Munich, Germany (SPX) Jan 20, 2021
An international consortium of scientists, initiated by Reinhard Kienberger, Professor of Laser and X-ray Physics at the Technical University of Munich (TUM), several years ago, has made significant measurements in the femtosecond range at the U.S. Stanford Linear Accelerator Center (SLAC). However, on these miniscule timescales, it is extremely difficult to synchronize the X-ray pulse that sparks a reaction in the sample on the one hand and the laser pulse which 'observes' it on the other. This problem is called timing jitter, and it is a major hurdle in ongoing efforts to perform time-resolved experiments at XFELs with ever-shorter resolution. Now, a large international research team has developed a method to get around this problem at XFELs and demonstrated its efficacy by measuring a fundamental decay process in neon gas.
Good timing can avoid radiation damage Radiation damage is caused by both the intense X-rays and the continued emission of Auger electrons, which can rapidly degrade the sample. Timing this decay would help to evade radiation damage in experiments studying different molecules. In addition, Auger decay is a key parameter in studies of exotic, highly excited states of matter, which can only be investigated at XFELs.
Research team delivers pioneering and highly accurate approach For the first application of their method, the team used neon gas, where the decay timings have been inferred in the past. After exposing both photoelectrons and Auger electrons to an external 'streaking' laser pulse, the researchers determined their final kinetic energy in each of tens of thousands of individual measurements. "Crucially, in each measurement, the Auger electrons always interact with the streaking laser pulse slightly later than the photoelectrons displaced initially, because they are emitted later," says Prof. Reinhard Kienberger, who helped to develop the experiment's design. "This constant factor forms the foundation of the technique." By combining so many individual observations, the team was able to construct a detailed map of the physical process, and thereby determine the characteristic time delay between the photo- and Auger emission.
Streaking method leads to success "Using this method, we were able to measure the delay between X-ray ionization and Auger emission in neon gases with the highest precision," explains lead author Dan Haynes of Hamburg's Max Planck Institute for the Structure and Dynamics of Matter. The researchers are hopeful that self-referenced streaking will have a broader impact in the field of ultrafast science. "Self-referenced streaking may facilitate a new class of experiments benefitting from the flexibility and extreme intensity of XFELs without compromising on time resolution," adds co-author Markus Wurzer, who is a PhD student of Prof. Kienberger.
X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle Berkeley CA (SPX) Jan 19, 2021 A new study, led by a theoretical physicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars. First theorized in the 1970s as part of a solution to a fundamental particle physics problem, axions are expected to be produced at the core of stars, and to convert into particles of light, called photons, in ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |