. 24/7 Space News .
WATER WORLD
Climate crisis drives Mediterranean coral populations to collapse
by Staff Writers
Barcelona, Spain (SPX) Jan 20, 2022

stock image only

A new study led by teams of the Faculty of Biology, the Biodiversity Research Institute (IRBio) of the University of Barcelona, and the Institute of Marine Sciences (ICM-CSIC) of Barcelona has revealed that marine heatwaves associated with the climate crisis are bringing down the populations of coral in the Mediterranean, the biomass of which in some cases has been reduced by 80 to 90%.

According to the study, published in the journal Proceedings of the Royal Society B, coral populations of the Mediterranean -essential for the functioning of the coral reefs, one of the most emblematic habitats in this sea- could be unable to recover from the recurrent impact of these extreme episodes, with water temperatures reaching high degrees for days and even weeks.

This is the first study to assess the long-term recovery capacity of populations of two emblematic species of Mediterranean coral: the red gorgonian (Paramuricea clavata) and the red coral (Corallium rubrum), which provide complex habitats that are essential for a great diversity of associated fauna. Therefore, it is essential to understand their resilience regarding the more frequent and intense heatwaves.

Mass mortality events
The climate crisis is severely affecting the marine ecosystems worldwide, and the Mediterranean is no exception. In particular, the marine heatwaves associated to the climate crisis are causing mass mortality events in all the coastal ecosystems of this basin, and among the most affected species are the Mediterranean corals.

Knowledge on the coral's long-term resilience is still scarce, despite the studies that analysed the immediate impact of marine heatwaves on these organisms. These are long-lived species (more than a hundred years in some cases) and with slow populational dynamics (that is, organisms with low growth and recruitment rates), and therefore researchers need long temporary series (decades) to assess their recovery capacity.

As part of the study, the team analysed the results obtained in a long-term monitoring on different populations of coral affected by a great mass mortality caused by a heatwave in 2003 in the protected marine area of Scandola (Corsega, France). In particular, they analysed data on the state of these populations (density, size structure and biomass) collected during the following fifteen years to the heatwave, by the researchers of the MedRecover research group, formed by experts of the UB and ICM-CSIC, among other centres.

Far from recovery, the results show that all the analysed populations tended to collapse since they were affected by the 2003 heatwave. Fifteen years after this event, these populations are practically considered to be extinct from a functional perspective.

"We observed an average biomass loss regarding the initial biomass of 80% in populations of red gorgonian, and up to a 93% regarding the studied population of red coral," notes Daniel Gomez, researcher at ICM-CSIC.

"These data are worrying for the conservation of these emblematic species, and it indicates that the effects of the climate crisis are speeding up with obvious consequences for the submarine landscapes, where the loss of coral equals the loss of trees in forests," notes Joaquim Garrabou, also member of ICM-CSIC.

Recurrent exposure to heatwaves
Cristina Linares, professor at the Department of Evolutionary Biology, Ecology and Environmental Sciences of the Faculty of Biology and member of IRBio, says that "we believe one of the main reasons why we observed these collapse trajectories is the potential recurrent exposure to heatwaves, incompatible with the slow populational dynamics of these species". In particular, during the study period (2003-2018), they registered important heatwaves in at least four years: 2009, 2016, 2017, 2018.

"During these heatwaves," continues Linares, "the temperature conditions in the studied area reached extreme levels which are incompatible with the life of these corals, which probably caused new mortality events to the decimated populations and made the recovery impossible."

Since we expect the number and intensity of marine heatwaves to increase over the following decades due to the climate crisis, the viability of many coral populations could be seriously threatened.

"However, there will probably be some areas in the Mediterranean in which, due to several factors, the recurrence of such climate impacts may be lower. This makes it especially relevant to keep -regarding other potential impacts- these climate refuges where the trajectories of coral populations could be more positive than those observed in this study," notes the research team.

"Nevertheless, there is an urgent need for stronger measures to be implemented against the climate crisis before the loss of biodiversity becomes irreplaceable," conclude the experts.

Research Report: "Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves"


Related Links
University of Barcelona
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Increase in marine heat waves threatens coastal habitats
Gloucester Point VA (SPX) Jan 19, 2022
Heat waves-like the one that blistered the Pacific Northwest last June-also occur underwater. A new study in Frontiers in Marine Science paints a worrisome picture of recent and projected trends in marine heat waves within the nation's largest estuary, with dire implications for the marine life and coastal economy of the Chesapeake Bay and other similarly impacted shallow-water ecosystems. The study's authors, Drs. Piero Mazzini and Cassia Pianca of William and Mary's Virginia Institute of Marine ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Crash test dummy

Cosmonauts complete first spacewalk of 2022 to prepare Russian ISS segment

Data-relay system connects astronauts direct to Europe

NASA's newest astronaut class begins training in Houston

WATER WORLD
Rocket Lab readies first 2022 Electron Launch, BlackSky adds another mission to manifest

SpaceX launches 2,000th Starlink satellite from Florida

Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Iran tests solid-fuel satellite carrier rocket

WATER WORLD
Dust storm grounded Mars helicopter, but it's ready to fly again

Grounded: First Flight Delay Due to Inclement Weather on Another World

Sols 3357-3360: Edging Closer and Closer to Panari

Curiosity measures intriguing carbon signature on Mars

WATER WORLD
China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

WATER WORLD
AGIS signs Kleos' data evaluation contract

GalaxySpace to establish space-based network

Liberty Strategic Capital to invest $150 Million in Satellogic and CF Acquisition Corp V

Palomar survey instrument analyzes impact of Starlink satellites

WATER WORLD
Facebook trumpets massive new supercomputer

Rusting iron can be its own worst enemy

A new language for quantum computing

Using ice to boil water

WATER WORLD
Scientists are a step closer to finding planets like Earth

Ironing out the interiors of exoplanets

Evidence for a second supermoon beyond our solar system

Unusual team finds gigantic planet hidden in plain sight

WATER WORLD
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.