. 24/7 Space News .
STELLAR CHEMISTRY
Clemson researchers decode thermal conductivity with light
by Staff Writers
Clemson SC (SPX) Nov 10, 2020

Collaborative research by (from left) Sriparna Bhattacharya, Prakash Parajuli and Apparao Rao has been published in the journal Advanced Science.

Groundbreaking science is often the result of true collaboration, with researchers in a variety of fields, viewpoints and experiences coming together in a unique way. One such effort by Clemson University researchers has led to a discovery that could change the way the science of thermoelectrics moves forward.

Graduate research assistant Prakash Parajuli; research assistant professor Sriparna Bhattacharya; and Clemson Nanomaterials Institute (CNI) Founding Director Apparao Rao (all members of CNI in the College of Science's Department of Physics and Astronomy) worked with an international team of scientists to examine a highly efficient thermoelectric material in a new way - by using light.

Their research has been published in the journal Advanced Science and is titled "High zT and its origin in Sb-doped GeTe single crystals."

"Thermoelectric materials convert heat energy into useful electric energy; therefore, there is a lot of interest in materials that can convert it most efficiently," Parajuli said

Bhattacharya explained that the key to measuring progress in the field is the figure of merit, noted as zT, which is highly dependent on the property of thermoelectric materials. "Many thermoelectric materials exhibit a zT of 1-1.5, which also depends on the temperature of the thermoelectric material. Only recently have materials with a zT of 2 or higher have been reported."

"This begs the question, how many more such materials can we find, and what is the fundamental science that is new here through which a zT greater than 2 can be achieved?" Rao added. "Basic research is the seed from which applied research grows, and to stay at the forefront in thermoelectrics we teamed up with professor Yang Yuan Chen's team at the Academia Sinica, Taiwan."

Chen and Rao's teams focused on Germanium Telluride (GeTe), a single crystal material.

"GeTe is of interest, but plain GeTe without any doping does not show exciting properties," Bhattacharya said. "But once we add a little bit of antimony to it, it does show good electronic properties, as well as very low thermal conductivity."

While others have reported GeTe-based materials with high zT, these were polycrystalline materials. Polycrystals have boundaries among the many small crystals of which they are formed. While such boundaries favorably impede heat transfer, they mask the origin of fundamental processes that lead to high zT.

"Here, we had pure and doped GeTe single crystals whose thermoelectric properties have not been reported," Bhattacharya said. "Therefore, we were able to evaluate the intrinsic properties of these materials that would otherwise be difficult to decipher in the presence of competing processes. This may be the first GeTe crystal with antimony doping that showed these unique properties - mainly the ultra-low thermal conductivity."

This low thermal conductivity came as a surprise, since the material's simple crystalline structure should allow for heat to flow easily throughout the crystal.

"Electrons carry the heat and electricity, so if you block the electrons, you have no electricity," Parajuli said. "Hence, the key is to block the flow of heat by the quantized lattice vibrations known as phonons, while allowing electrons to flow."

Doping GeTe with the right amount of antimony can maximize electron flow and minimize heat flow. This study found that the presence of 8 antimony atoms for every 100 GeTe gives rise to a new set of phonons, which effectively reduce heat flow that was confirmed both experimentally and theoretically.

The team, along with collaborators who grew the crystals, performed electronic and thermal transport measurements in addition to density functional theory calculations to find this mechanism in two ways: first, through modeling, using the thermal conductivity data; second, through Raman spectroscopy, which probes the phonons within a material.

"This is a totally new angle for thermoelectric research," Rao said. "We are sort of pioneers in that way - decoding thermal conductivity in thermoelectrics with light. What we found using light agreed well with what was found through thermal transport measurements. Future research in thermoelectrics should use light - it's a very powerful nondestructive method to elucidate heat transport in thermoelectrics. You shine light on the sample, and collect information. You aren't destroying the sample."

Rao said that the collaborators' wide range of expertise was key to their success. The group included Fengjiao Liu, a former Ph.D. student at CNI; Rahul Rao, Research Physical Scientist at the ?Air Force Research Laboratory, Wright-Patterson Air Force Base; and Oliver Rancu, a high school student at the South Carolina Governor's School for Science and Mathematics who worked with the team through Clemson's SPRI (Summer Program for Research Interns) program. Because of the pandemic, the team worked with Rancu via Zoom, guiding him with some of Parajuli's calculations using an alternate Matlab code.

"I am so very grateful for the opportunity to work with the CNI team members this summer," said Rancu, who hails from Anderson, South Carolina. "I have learned so many things about both physics and the research experience in general. It truly was priceless, and this research publication is just another addition to an already fantastic experience."

"I was very impressed by Oliver," Parajuli added. "He caught on quickly with the necessary framework for the theory."

Research paper


Related Links
Clemson University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A trillion turns of light nets terahertz polarized bytes
Houston TX (SPX) Oct 20, 2020
U.S. and Italian engineers have demonstrated the first nanophotonic platform capable of manipulating polarized light 1 trillion times per second. "Polarized light can be used to encode bits of information, and we've shown it's possible to modulate such light at terahertz frequencies," said Rice University's Alessandro Alabastri, co-corresponding author of a study published this week in Nature Photonics. "This could potentially be used in wireless communications," said Alabastri, an assistant ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Twenty years on Station leads to multiple advances on Earth

ISS to preserve cooperation, Roscosmos Head says on 20th anniversary of crewed operations

NASA contacts Voyager 2 using upgraded Deep Space Network Dish

China's Mars probe completes third orbital correction

STELLAR CHEMISTRY
Sounding Rocket to See What Keeps Intergalactic Space Sizzling

ESA lays out roadmap to Ariane 6 and Vega-C flights

Rocket Lab launches 15th Mission - deploys sats Planet and Canon

Rockets need intelligence booster, say engineers

STELLAR CHEMISTRY
Water on ancient Mars

Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

STELLAR CHEMISTRY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

STELLAR CHEMISTRY
Kleos team complete final prep for Scouting Mission launch Nov 7

Globalsat Group successfully tests Iridium Edge Pro

Budding space entrepreneurs wow industry experts

ESA Masterclass full series: Leadership at Mission Control

STELLAR CHEMISTRY
Optimizing the design of new materials

Monitoring open-cast mines better than before

3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

Portrait transmitted via 3D printing

STELLAR CHEMISTRY
Assessing the habitability of planets around old red dwarfs

About Half of Sun-Like Stars Could Host Rocky, Potentially Habitable Planets

Comets Had Impact in the Start of Life on Earth

Mars-sized rogue planet found drifting through the Milky Way

STELLAR CHEMISTRY
Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.