. | . |
Citizen scientists discover five-planet system by Staff Writers Pasadena CA (SPX) Jan 12, 2018
In its search for exoplanets - planets outside of our solar system - NASA's Kepler telescope trails behind Earth, measuring the brightness of stars that may potentially host planets. The instrument identifies potential planets around other stars by looking for dips in the brightness of the stars that occur when planets cross in front of, or transit, them. Typically, computer programs flag the stars with these brightness dips, then astronomers look at each one and decide whether or not they truly could host a planet candidate. Over the three years of the K2 mission, 287,309 stars have been observed, and tens of thousands more roll in every few months. So how do astronomers sift through all that data? Enter the Exoplanet Explorers citizen scientist project, developed by UC Santa Cruz astronomer Ian Crossfield and Caltech staff scientist Jessie Christiansen. Exoplanet Explorers is hosted on Zooniverse, an online platform for crowdsourcing research. "People anywhere can log on and learn what real signals from exoplanets look like, and then look through actual data collected from the Kepler telescope to vote on whether or not to classify a given signal as a transit, or just noise," says Christiansen. "We have each potential transit signal looked at by a minimum of 10 people, and each needs a minimum of 90 percent of 'yes' votes to be considered for further characterization." In early April, just two weeks after the initial prototype of Exoplanet Explorers was set up on Zooniverse, it was featured in a three-day event on the ABC Australia television series Stargazing Live. In the first 48 hours after the project was introduced, Exoplanet Explorers received over 2 million classifications from more than 10,000 users. Included in that search was a brand-new dataset from the K2 mission - the reincarnation of the primary Kepler mission, ended three years ago. K2 has a whole new field of view and crop of stars around which to search for planets. No professional astronomer had yet looked through this dataset, called C12. Back in California, Crossfield and Christiansen joined NASA astronomer Geert Barentsen, who was in Australia, in examining results as they came in. Using the depth of the transit curve and the periodicity with which it appears, they made estimates for how large the potential planet is and how close it orbits to its star. On the second night of the show, the researchers discussed the demographics of the planet candidates found so far - 44 Jupiter-sized planets, 72 Neptune-sized, 44 Earth-sized, and 53 so-called Super Earth's, which are larger than Earth but smaller than Neptune. "We wanted to find a new classification that would be exciting to announce on the final night, so we were originally combing through the planet candidates to find a planet in the habitable zone - the region around a star where liquid water could exist," says Christiansen. "But those can take a while to validate, to make sure that it really is a real planet and not a false alarm. So, we decided to look for a multi-planet system because it's very hard to get an accidental false signal of several planets." After this decision, Barentsen left to get a cup of tea. By the time he returned, Christiansen had sorted the crowdsourced data to find a star with multiple transits and discovered a star with four planets orbiting it. Three of the four planets had 100 percent "yes" votes from over 10 people, and the remaining one had 92 percent "yes" votes. This is the first multi-planet system of exoplanets discovered entirely by crowdsourcing. After the discovery was announced on Stargazing Live, Christiansen and her colleagues continued to study and characterize the system, dubbed K2-138. They statistically validated the set of planet signals as being "extremely likely," according to Christiansen, to be signals from true planets. They also found that the planets are orbiting in an interesting mathematical relationship called a resonance, in which each planet takes almost exactly 50 percent longer to orbit the star than the next planet further in. The researchers also found a fifth planet on the same chain of resonances, and hints of a sixth planet as well. A paper describing the system has been accepted for publication in The Astronomical Journal, and Christiansen is speaking about K2-138 at this week's 231st meeting of the American Astronomical Society in Washington, DC. This is the only system with a chain of unbroken resonances in this configuration, and may provide clues to theorists looking to unlock the mysteries of planet formation and migration. "The clockwork-like orbital architecture of this planetary system is keenly reminiscent of the Galilean satellites of Jupiter," says Konstantin Batygin, assistant professor of planetary science and Van Nuys Page Scholar, who was not involved with the study. "Orbital commensurabilities among planets are fundamentally fragile, so the present-day configuration of the K2-138 planets clearly points to a rather gentle and laminar formation environment of these distant worlds." "Some current theories suggest that planets form by a chaotic scattering of rock and gas and other material in the early stages of the planetary system's life. However, these theories are unlikely to result in such a closely packed, orderly system as K2-138," says Christiansen. "What's exciting is that we found this unusual system with the help of the general public."
Research Report: "The K2-138 System: A Near-Resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists," Jessie L. Christiansen et al., 2018 February, Astronomical Journal
Montreal, Canada (SPX) Jan 10, 2018 An international research team led by Universite de Montreal astrophysicist Lauren Weiss has discovered that exoplanets orbiting the same star tend to have similar sizes and a regular orbital spacing. This pattern, revealed by new W. M. Keck Observatory observations of planetary systems discovered by the Kepler Telescope, could suggest that most planetary systems have a different formation histo ... read more Related Links California Institute Of Technology Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |