. 24/7 Space News .
SOLAR SCIENCE
Chinese solar telescope reveals acceleration of magnetic reconnection
by Staff Writers
Beijing, China (SPX) Mar 15, 2021

Two groups of fibrils, marked L2 and L4, converge and reconnect with each other. Two sets of newly formed fibrils, marked L1 and L3, then appear and retract from the reconnection region.

Magnetic reconnection refers to the reconfiguration of magnetic field geometry. It plays an elemental role in the rapid release of magnetic energy and its conversion to other forms of energy in magnetized plasma systems throughout the universe.

Researchers led by Dr. LI Leping from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) analyzed the evolution of magnetic reconnection and its nearby filament. The result suggested that reconnection is significantly accelerated by the propagating disturbance caused by the adjacent filament eruption.

The New Vacuum Solar Telescope (NVST) is a 1-m ground-based solar telescope, located in the Fuxian Solar Observatory of the Yunnan Astronomical Observatories of the Chinese Academy of Sciences (YNAO). It provides observations of the solar fine structures and their evolution in the solar lower atmosphere.

The NVST observed the active region 11696 on March 15, 2013, in the Ha channel, centered at 6562.8 A with a bandwidth of 0.25 A.

Employing the NVST Ha images with higher spatial resolution, the researchers studied the evolution of magnetic loops and their nearby filament in the active region, combining the Atmospheric Imaging Assembly (AIA) extreme ultraviolet (EUV) images and Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms on board the Solar Dynamic Observatory (SDO).

In NVST Ha images, two groups of fibrils converged and interacted with each other. Two sets of newly formed fibrils then appeared and retracted from the interaction region.

"The result provides clear evidence of magnetic reconnection," said Prof. Hardi Peter from the Max Planck Institute for Solar System Research (MPS), a co-author of the study. In AIA EUV images, the current sheet formed repeatedly in the reconnection region in the lower-temperature channels, and plasmoids appeared in the current sheet and propagated along it bidirectionally.

A filament was located to the southeast of the reconnection region. It erupted and pushed away the loops covering the reconnection region. "The filament eruption led to a disturbance propagating outward across the reconnection region," said Dr. LI Leping, the first author of this study.

The current sheet subsequently became shorter and brighter, with a larger reconnection rate. It appeared in the AIA higher-temperature channels. In the current sheet, more and hotter plasmoids formed.

"Compared with the observations before the filament eruption during the same time intervals, more thermal and kinetic energy was converted through reconnection after the filament eruption," said Dr. LI. "The reconnection was thus significantly accelerated by the propagating disturbance caused by the nearby filament eruption."

The study was published in The Astrophysical Journal on Feb. 25.

Research paper


Related Links
Chinese Academy Of Sciences Headquarters
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Explaining Parker Solar Probe's magnetic puzzle
Greenbelt MD (SPX) Mar 10, 2021
When NASA's Parker Solar Probe sent back the first observations from its voyage to the Sun, scientists found signs of a wild ocean of currents and waves quite unlike the near-Earth space much closer to our planet. This ocean was spiked with what became known as switchbacks: rapid flips in the Sun's magnetic field that reversed direction like a zig-zagging mountain road. Scientists think piecing together the story of switchbacks is an important part of understanding the solar wind, the constant str ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Astronauts conclude spacewalk maintenance on International Space Station

NASA astronauts complete spacewalk

Astronauts plan Saturday spacewalk at space station

Roscosmos, NASA in contradiction over next ISS Commander

SOLAR SCIENCE
NASA Targets March 18 for SLS Hot Fire Test

Breaking the warp barrier for faster-than-light travel

SpaceX launches 22nd cluster of Starlink satellites

Stacking complete for twin Space Launch System rocket boosters

SOLAR SCIENCE
Perseverance SuperCam science instrument delivers first results

Mars Express unlocks the secrets of curious cloud

Perseverance 'SuperCam' begins hunt for past life on Mars

ExoMars goes for a spin

SOLAR SCIENCE
China selects astronauts for space station program

China advances space cooperation in 2020: blue book

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

SOLAR SCIENCE
Pioneering UK space technology gets government cash boost

Satellite company Spire Global plans to expand with new funds

ESA defines elements of future European space transportation solutions

SpaceX launches 21st Starlink communications satellite cluster

SOLAR SCIENCE
Porous, ultralow-temperature supercapacitors could power Mars, polar missions

From better sunglasses to a better way of looking at asteroid surfaces

Arecibo telescope collapse may complicate NASA asteroid mission

Canadian firm builds satellites to track space trash

SOLAR SCIENCE
Distant planet may be on its second atmosphere

A giant, sizzling planet may be orbiting the star Vega

Planet-hunting eye of Plato

Ideas for future NASA missions searching for extraterrestrial civilizations

SOLAR SCIENCE
SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.