. 24/7 Space News .
STELLAR CHEMISTRY
Chemists use light energy to produce small molecular rings
by Staff Writers
Munster, Germany (SPX) May 27, 2022

Single-crystal X-ray structures of two products arising from the cycloaddition reaction. In particular, on the left a unique five-four-three membered condensed ring system is visible. On the right, a four-six membered framework can be recognized. Carbon atoms are shown in grey, hydrogen atoms in white, nitrogen atoms in blue, oxygen atoms in red and chlorine atoms in green.

In the search for new active agents in medicine, molecules whose atoms are linked in rings are becoming increasingly important. Such ring systems have particularly suitable properties for producing such active agents and they are driving the development of innovative treatments for malignant tumours, as well as for neurodegenerative and infectious diseases.

A team of chemists headed by Prof Frank Glorius from the University of Munster (Germany) has now succeeded in synthesising new and medically significant small molecular rings, which are difficult to produce because they are particularly sensitive. The team's work has been published in the journal "Nature Catalysis".

Among chemists, especially the synthesis of small ring systems from so-called aromatic compounds is considered to be difficult. Also, an especially large amount of energy is needed for the process. A further hurdle is that the energy has to be released selectively to the source materials, but not to the heat-sensitive products.

Frank Glorius' team has now developed a strategy in which visible light, as an inexpensive energy source, activates a photocatalyst which drives the reaction. The photocatalyst absorbs the light and transfers its energy to the source materials. In this way, it enables synthesis to take place which is highly efficient and mild and which has no, or hardly any, undesired side-reactions.

"We see our study as a breakthrough in synthesis chemistry," says lead author Dr. Jiajia Ma. "It shows that light energy can be used in a targeted way to produce small ring systems. The fact that, by using different reaction partners, we can produce different ring systems provides numerous opportunities for the production of active agents." For their source materials, the chemists used only easily available, inexpensive raw materials.

The study was produced in collaboration with Prof Kendall Houk, from the University of California in Los Angeles (USA), who is recognised worldwide as an expert on computer chemistry. Houk's computer calculations were done with Shuming Chen, a Professor at the elite American undergraduate institution, Oberlin College (Ohio). Working together, the researchers succeeded in explaining the underlying reaction mechanism.

Research Report:Intermolecular Cascade Dearomative [2+2] Cycloaddition/Rearrangements of Quinolines with Alkenes: Facile Access to Fused 2D/3D Rings


Related Links
University of Munster
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Shaping the future of light through reconfigurable metasurfaces
Atlanta GA (SPX) May 18, 2022
The technological advancement of optical lenses has long been a significant marker of human scientific achievement. Eyeglasses, telescopes, cameras, and microscopes have all literally and figuratively allowed us to see the world in a new light. Lenses are also a fundamental component of manufacturing nanoelectronics by the semiconductor industry. One of the most impactful breakthroughs of lens technology in recent history has been the development of photonic metasurfaces - artificially engineered ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NanoAvionics and Gama to set sails in space

Boeing Starliner completes key test mission to ISS, with some hiccups

Soil, sutures, and climate modeling among investigations riding SpaceX CRS-25 Dragon to ISS

NASA-supported solar sail could take science to new heights

STELLAR CHEMISTRY
Upper Stage Propulsion System for future Artemis mission reaches major milestone

SpaceX's Transporter 5 launches with remains of 47 people for 'space burial'

Southern Launch receives further Government funding

Debris from Chinese rocket reenters atmosphere, mostly burning up

STELLAR CHEMISTRY
Blast a Knob: Sols 3485-3486

NASA's Perseverance rover's playlist like no other on Mars

Up, Up and Away - Sols 3487-3490

Why Did Mars Dry Out? New Study Points To Unusual Answers

STELLAR CHEMISTRY
Researchers start planting space-bred seeds returned by Shenzhou-13

China's space tracking ship departs for 100th mission

New cargo spacecraft being built

The beginning of a multi-spacecraft exploration in Martian space by China, the US and Europe

STELLAR CHEMISTRY
Satellogic launches 4 Satellites on SpaceX Transporter-5 Mission

Sidus Space selects L3Harris Mission Critical Operations Center Software for LizzieSat constellation

OneWeb satellite to be deorbited at the end of its active lifetime

OneWeb and TinSky complete first West African LEO Satellite Gateway

STELLAR CHEMISTRY
NASA Supports Small Business Research to power future exploration

A one-stop shop for quantum sensing materials

Benchmark Space Systems to support Space Forge's Sustainable In-Space Manufacturing Mission

Varda Space Industries orders 4th Photon from Rocket Lab for In-Space Manufacturing

STELLAR CHEMISTRY
Geology from 50 light-years away

Unistellar and SETI Institute expand Worldwide Citizen-Science Astronomy Network

AI reveals unsuspected math underlying search for exoplanets

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

STELLAR CHEMISTRY
Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.