24/7 Space News
STELLAR CHEMISTRY
Chemical cartography reveals the Milky Way's spiral arms
Hawkins' model superimposed over a NASA Jet Propulsion Laboratory illustration of the Milky Way. Red and blue spots indicate objects with a high or low metallicity, respectively. High metallicity (red) corresponds to the presence of young stars, which are more abundant in spiral arms. Credit: K. Hawkins (UT Austin), NASA/JPL-Caltech/R. Hurt (SSC/Caltech).
Chemical cartography reveals the Milky Way's spiral arms
by Emily Howard for UT Austin News
Austin TX (SPX) Jul 21, 2023

Keith Hawkins, assistant professor of astronomy at The University of Texas at Austin, has used chemical cartography - also known as chemical mapping - to identify regions of the Milky Way's spiral arms that have previously gone undetected. His research, published in the Monthly Notices of the Royal Astronomical Society, demonstrates the value of this pioneering technique in understanding the shape, structure, and evolution of our home Galaxy.

Chemical maps of the Galaxy show how the elements of the periodic table are distributed throughout the Milky Way. They enable astronomers to identify the location of celestial objects based on their chemical composition rather than the light they emit. Though the idea of chemical cartography has been around for a while, astronomers have only recently been able to gain significant results from the technique. That's thanks to increasingly powerful telescopes coming online.

"Much like the early explorers, who created better and better maps of our world, we are now creating better and better maps of the Milky Way," says Hawkins. "Those maps are revealing things we thought to be true, but still need to check."

We've known since the 1950s that the Milky Way is a spiral galaxy. However, its precise form, structure, and even the number of its arms has been a matter of ongoing investigation. That's because we live inside of our home Galaxy and are unable to travel far enough to see it from an outsider's perspective. "It's like being in a big city," explains Hawkins. "You can look around at the buildings and you can see what street you're on, but it's hard to know what the whole city looks like unless you're in a plane flying above it."

Our limited view of the Milky Way hasn't prevented astronomers from creating well-informed models of it; or artists from drawing beautiful illustrations of it. "But," says Hawkins, "I wanted to find out how accurate those models and illustrations actually are. And to see if chemical cartography could reveal a clearer view of the Milky Way's spiral arms."

Mapping the Milky Way
One traditional way to map the Milky Way is by identifying concentrations of young stars. As the Milky Way rotates, dust and gas in its spiral arms compress, prompting the birth of new stars. So, where there is an abundance of young stars, it's predicted that there is also an arm.

Astronomers can locate young stars by detecting the light they emit. But sometimes clouds of dust can obscure stars, making it difficult for even the best telescopes to observe their light. As a result, some regions of the Milky Way's arms have yet to be discovered.

Chemical cartography helps astronomers fill in the missing pieces.

It does so by relying on an astronomical concept called "metallicity." Metallicity refers to the ratio of metals to hydrogen present on a star's surface. In astronomy, any element on the periodic table that isn't hydrogen or helium is called a "metal." Young stars possess more metals than older stars, and therefore have a higher metallicity. This is because they formed later in the history of our universe, when more metals existed.

After the Big Bang, the only elements in existence were hydrogen, helium, and scant traces of a few metals. In their cores, the first generation of stars fused hydrogen and helium into more and more complex metals (that is, heavier and heavier elements on the periodic table), until they finally died or exploded. But out of chaos comes life. These explosions ejected metals into their surroundings, where they were used as building blocks for the next generation of stars.

As the cycle of stellar birth and destruction repeats, each subsequent generation of stars is enriched with more complex metals than the one before it, giving it a higher and higher metallicity. In theory, the Milky Way's spiral arms, which contain an abundance of young stars, should have a higher metallicity than the regions between them.

Comparing Maps
To create his map, Hawkins identified the distribution of metallicity in the Milky Way. He focused on the area around our sun for which this data exists - a view of up to 32,600 light years. Areas with an abundance of metal-rich objects were expected to line up with spiral arms and those with a scarcity of metal-rich objects to line up with the spaces in between the arms.

When he compared his own map to others of the same area of the Milky Way, the spiral arms lined up with one another. What's more, because Hawkins' map identifies the spiral arms based on metallicity rather than the light emitted by young stars, new regions showed up that had previously gone uncharted.

"A big takeaway," says Hawkins, "is that the spiral arms are indeed richer in metals. This illustrates the value of chemical cartography in identifying the Milky Way's structure and formation. It has the potential to fully transform our view of the Galaxy."

Gaia Space Telescope Revolutionizes Study of Our Galaxy
As our telescopes become more powerful, so too does the promise of chemical cartography.

For his research, Hawkins analyzed data from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) and Gaia space telescope. New data from Gaia (Data Release 3) was particularly insightful. That's because Gaia offers the most precise and comprehensive survey of the Milky Way to date, including of its chemical composition.

Since it launched in 2013, Gaia has monitored around two billion objects. Astronomers are now able to expand their research from thousands of objects to billions, and for a much larger area of the Galaxy.

"The sheer volume of data available from Gaia allows us to do chemical cartography at a galactic scale now," says Hawkins. "Data on both the positions for billions of stars and their chemical makeup wasn't available until recently."

So far, Gaia has provided chemical data for the largest area of the Milky Way to date. However, this still only accounts for about one percent of the Galaxy. As Gaia continues to survey the heavens, and as new telescopes come online, astronomers can increasingly use chemical cartography to understand fundamental properties of our home Galaxy. These lessons can, in turn, be applied to other galaxies and the universe as a whole. As Hawkins explains, "It's a completely new era."

Research Report:Chemical Cartography with LAMOST and Gaia Reveal Azimuthal and Spiral Structure in the Galactic Disk

Related Links
College of Natural Sciences - University of Texas
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
PIGS finds ancient stars in the heart of the Milky Way
Cardiff UK (SPX) Jul 04, 2023
An international team of researchers has obtained the largest set of detailed observations yet of the oldest stars in the centre of our Galaxy, the Milky Way. The Pristine Inner Galaxy Survey (PIGS) team finds that this group of stars is slowly spinning around the centre of the Milky Way, despite being thought to have formed in a chaotic fashion. They also seem to spend most of their long lives near the Galactic centre. PIGS team member Dr Anke Arentsen from the University of Cambridge presents th ... read more

STELLAR CHEMISTRY
In new space race, scientists propose geoarchaeology can aid in preserving space heritage

Geophysics student employs 800-year-old method for Lunar GPS system

NASA's Bill Nelson to discuss bilateral cooperation in South America

On space, poll shows most Americans support NASA's role, U.S. presence

STELLAR CHEMISTRY
NASA picks Lockheed Martin to develop nuclear rocket

Kuaizhou 1A launches satellites into orbit

Rocket Lab set to boost Capella's satellite constellation with upcoming launch

World's first methane-fueled rocket makes history, courtesy of LandSpace and GCL

STELLAR CHEMISTRY
Sleeping the Sol Away: Sol 3894

Unveiling Mars' Past: Olympus Mons as a Gigantic Volcanic Isle

Perseverance sees Mars in a new light

Sols 3895-3897: Navigating Through the Crater Cluster

STELLAR CHEMISTRY
China's Space Station Opens Doors to Global Scientific Community

China's Lunar Mission targets manned landing by 2030

Shenzhou XVI crew set to conduct their first EVA

Timeline unveiled for China's advanced manned spacecraft's inaugural flight

STELLAR CHEMISTRY
From AI to Nuclear: UK launches Strategic Plan for Future Space Exploration

Future of Satellite Internet: OneWeb vs Starlink

Successful entry into service of the multi-mission EUTELSAT 10B satellite

Amazon invests $120 million in internet satellite facility

STELLAR CHEMISTRY
Goddard, Wallops Engineers Test Printed Electronics in Space

Optimum Technologies unveils innovative spacecraft facility in Northern Virginia

Revolutionary materials and techniques transform aircraft construction

Billions of nanoplastics released when microwaving baby food containers

STELLAR CHEMISTRY
Water discovered in rocky planet-forming zone offers clues on habitability

NASA lab hopes to find life's building blocks in asteroid sample

New study reveals Roman Telescope could find 400 Earth-mass rogue planets

Does this exoplanet have a sibling sharing the same orbit

STELLAR CHEMISTRY
NASA's Juno Is Getting Ever Closer to Jupiter's Moon Io

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.