. 24/7 Space News .
ROBO SPACE
Charting a safe course through a highly uncertain environment
by Adam Zewe for MIT News Office
Boston MA (SPX) May 19, 2022

MIT researchers developed a trajectory-planning system for autonomous vehicles that enables them to travel from a starting point to a target location even when there are many different uncertainties in the environment.

An autonomous spacecraft exploring the far-flung regions of the universe descends through the atmosphere of a remote exoplanet. The vehicle, and the researchers who programmed it, don't know much about this environment.

With so much uncertainty, how can the spacecraft plot a trajectory that will keep it from being squashed by some randomly moving obstacle or blown off course by sudden, gale-force winds?

MIT researchers have developed a technique that could help this spacecraft land safely. Their approach can enable an autonomous vehicle to plot a provably safe trajectory in highly uncertain situations where there are multiple uncertainties regarding environmental conditions and objects the vehicle could collide with.

The technique could help a vehicle find a safe course around obstacles that move in random ways and change their shape over time. It plots a safe trajectory to a targeted region even when the vehicle's starting point is not precisely known and when it is unclear exactly how the vehicle will move due to environmental disturbances like wind, ocean currents, or rough terrain.

This is the first technique to address the problem of trajectory planning with many simultaneous uncertainties and complex safety constraints, says co-lead author Weiqiao Han, a graduate student in the Department of Electrical Engineering and Computer Science and the Computer Science and Artificial Intelligence Laboratory (CSAIL).

"Future robotic space missions need risk-aware autonomy to explore remote and extreme worlds for which only highly uncertain prior knowledge exists. In order to achieve this, trajectory-planning algorithms need to reason about uncertainties and deal with complex uncertain models and safety constraints," adds co-lead author Ashkan Jasour, a former CSAIL research scientist who now works on robotics systems at the NASA Jet Propulsion Laboratory.

Joining Han and Jasour on the paper is senior author Brian Williams, professor of aeronautics and astronautics and a member of CSAIL. The research will be presented at the IEEE International Conference on Robotics and Automation and has been nominated for the outstanding paper award.

Avoiding assumptions
Because this trajectory planning problem is so complex, other methods for finding a safe path forward make assumptions about the vehicle, obstacles, and environment. These methods are too simplistic to apply in most real-world settings, and therefore they cannot guarantee their trajectories are safe in the presence of complex uncertain safety constraints, Jasour says.

"This uncertainty might come from the randomness of nature or even from the inaccuracy in the perception system of the autonomous vehicle," Han adds.

Instead of guessing the exact environmental conditions and locations of obstacles, the algorithm they developed reasons about the probability of observing different environmental conditions and obstacles at different locations. It would make these computations using a map or images of the environment from the robot's perception system.

Using this approach, their algorithms formulate trajectory planning as a probabilistic optimization problem. This is a mathematical programming framework that allows the robot to achieve planning objectives, such as maximizing velocity or minimizing fuel consumption, while considering safety constraints, such as avoiding obstacles. The probabilistic algorithms they developed reason about risk, which is the probability of not achieving those safety constraints and planning objectives, Jasour says.

But because the problem involves different uncertain models and constraints, from the location and shape of each obstacle to the starting location and behavior of the robot, this probabilistic optimization is too complex to solve with standard methods. The researchers used higher-order statistics of probability distributions of the uncertainties to convert that probabilistic optimization into a more straightforward, simpler deterministic optimization problem that can be solved efficiently with existing off-the-shelf solvers.

"Our challenge was how to reduce the size of the optimization and consider more practical constraints to make it work. Going from good theory to good application took a lot of effort," Jasour says.

The optimization solver generates a risk-bounded trajectory, which means that if the robot follows the path, the probability it will collide with any obstacle is not greater than a certain threshold, like 1 percent. From this, they obtain a sequence of control inputs that can steer the vehicle safely to its target region.

Charting courses
They evaluated the technique using several simulated navigation scenarios. In one, they modeled an underwater vehicle charting a course from some uncertain position, around a number of strangely shaped obstacles, to a goal region. It was able to safely reach the goal at least 99 percent of the time. They also used it to map a safe trajectory for an aerial vehicle that avoided several 3D flying objects that have uncertain sizes and positions and could move over time, while in the presence of strong winds that affected its motion. Using their system, the aircraft reached its goal region with high probability.

Depending on the complexity of the environment, the algorithms took between a few seconds and a few minutes to develop a safe trajectory.

The researchers are now working on more efficient processes that would reduce the runtime significantly, which could allow them to get closer to real-time planning scenarios, Jasour says.

Han is also developing feedback controllers to apply to the system, which would help the vehicle stick closer to its planned trajectory even if it deviates at times from the optimal course. He is also working on a hardware implementation that would enable the researchers to demonstrate their technique in a real robot.

This research was supported, in part, by Boeing.

Research Report:"Non-Gaussian Risk Bounded Trajectory Optimization for Stochastic Nonlinear Systems in Uncertain Environments"


Related Links
Computer Science and Artificial Intelligence Lab (CSAIL)
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Deadbots can speak for you after your death
Barcelona, Spain (SPX) May 18, 2022
Machine-learning systems are increasingly worming their way through our everyday lives, challenging our moral and social values and the rules that govern them. These days, virtual assistants threaten the privacy of the home; news recommenders shape the way we understand the world; risk-prediction systems tip social workers on which children to protect from abuse; while data-driven hiring tools also rank your chances of landing a job. However, the ethics of machine learning remains blurry for many. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Engineers investigating Voyager 1 telemetry data

Blue Origin delays next flight over technical issues

Boeing's Starliner spaceship docks with ISS in high-stakes test mission

Boeing's Starliner to launch uncrewed test flight to International Space Station

ROBO SPACE
Blue Origin scrubs Friday launch over vehicle issue

Artemis I Moon Rocket to Return to Launch Pad 39B in Early June

Musk, Bolsonaro talk free speech, deforestation in Brazil

Boeing's Starliner encounters propulsion problems on way to ISS

ROBO SPACE
Everyone wants a piece of this Pie - Sols 3478-3479

Physicists explain how type of aurora on Mars is formed

Mars' emitted energy and seasonal energy imbalance

China's Zhurong rover switches to dormant mode in severe Martian dust storm

ROBO SPACE
The beginning of a multi-spacecraft exploration in Martian space by China, the US and Europe

New cargo spacecraft being built

Tianwen-1 mission marks first year on Mars

China's cargo craft docks with space station combination

ROBO SPACE
Australian Uni and SSC sign MoU to strengthen space capabilities in Australia and Sweden

Spire Global to launch five satellites on SpaceX Transporter-5 Mission

Why the Space-as-a-Service Business Models are Taking the Space Sector by Storm

Final Pleiades Neo satellites ready to join rest of family

ROBO SPACE
The European Innovation Council supports E.T. PACK-Fly, a project to mitigate space debris

Ultracold Bubbles on Space Station Open New Avenues of Quantum Research

The missing piece to faster, cheaper and more accurate 3D mapping

Preparation for LizzieSat-1 Mission continues as NASA customer completes important milestone

ROBO SPACE
Seeing through the fog-pinpointing young stars and their protoplanetary disks

The search for how life on Earth transformed from simple to complex

The origin of life: A paradigm shift

Researchers reveal the origin story for carbon-12, a building block for life

ROBO SPACE
Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.