Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Chaotic physics in ferroelectrics hints at brain-like computing
by Staff Writers
Oak Ridge TN (SPX) Nov 25, 2013


Unexpected behavior in ferroelectric materials explored by researchers at Oak Ridge National Laboratory supports a new approach to information storage and processing known as memcomputing.

Unexpected behavior in ferroelectric materials explored by researchers at the Department of Energy's Oak Ridge National Laboratory supports a new approach to information storage and processing.

Ferroelectric materials are known for their ability to spontaneously switch polarization when an electric field is applied. Using a scanning probe microscope, the ORNL-led team took advantage of this property to draw areas of switched polarization called domains on the surface of a ferroelectric material. To the researchers' surprise, when written in dense arrays, the domains began forming complex and unpredictable patterns on the material's surface.

"When we reduced the distance between domains, we started to see things that should have been completely impossible," said ORNL's Anton Ievlev, the first author on the paper published in Nature Physics. "All of a sudden, when we tried to draw a domain, it wouldn't form, or it would form in an alternating pattern like a checkerboard. At first glance, it didn't make any sense. We thought that when a domain forms, it forms. It shouldn't be dependent on surrounding domains."

After studying patterns of domain formation under varying conditions, the researchers realized the complex behavior could be explained through chaos theory. One domain would suppress the creation of a second domain nearby but facilitate the formation of one farther away -- a precondition of chaotic behavior, says ORNL's Sergei Kalinin, who led the study.

"Chaotic behavior is generally realized in time, not in space," he said. "An example is a dripping faucet: sometimes the droplets fall in a regular pattern, sometimes not, but it is a time-dependent process. To see chaotic behavior realized in space, as in our experiment, is highly unusual."

Collaborator Yuriy Pershin of the University of South Carolina explains that the team's system possesses key characteristics needed for memcomputing, an emergent computing paradigm in which information storage and processing occur on the same physical platform.

"Memcomputing is basically how the human brain operates: Neurons and their connections--synapses--can store and process information in the same location," Pershin said. "This experiment with ferroelectric domains demonstrates the possibility of memcomputing."

Encoding information in the domain radius could allow researchers to create logic operations on a surface of ferroelectric material, thereby combining the locations of information storage and processing.

The researchers note that although the system in principle has a universal computing ability, much more work is required to design a commercially attractive all-electronic computing device based on the domain interaction effect.

"These studies also make us rethink the role of surface and electrochemical phenomena in ferroelectric materials, since the domain interactions are directly traced to the behavior of surface screening charges liberated during electrochemical reaction coupled to the switching process," Kalinin said.

The study is published as "Intermittency, quasiperiodicity, and chaos during scanning probe microscopy tip-induced ferroelectric domain switching," and is available online. Coauthors are ORNL's Stephen Jesse, Evgheni Strelcov, Sergei Kalinin and Amit Kumar; the National Academy of Sciences of Ukraine's Anna Morozovska and Eugene Eliseev; the University of South Carolina's Yuriy Pershin; and Ural Federal University's Vladimir Shur. Ievlev, formerly of Ural Federal University, has joined ORNL as a postdoctoral fellow.

.


Related Links
Oak Ridge National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Next-generation semiconductors synthesis
Washington DC (SPX) Nov 14, 2013
Although silicon semiconductors are nearly universal in modern electronics, devices made from silicon have limitations-including that they cease to function properly at very high temperatures. One promising alternative are semiconductors made from combinations of aluminum, gallium, and indium with nitrogen to form aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN), whi ... read more


CHIP TECH
NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

Rediscovered Apollo data gives first measure of how fast Moon dust piles up

NASA's GRAIL Mission Puts a New Face on the Moon

CHIP TECH
Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

Rover Team Working to Diagnose Electrical Issue

CHIP TECH
NASA Advances Effort to Launch Astronauts Again from US Soil to Space Station

Israeli experts launches space studies course for teachers

Success of 'New Space' era hinges on public's interest

NASA Issues 2014 Call for Advanced Technology Concepts

CHIP TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

CHIP TECH
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

CHIP TECH
Spaceflight Deploys Planet Labs' Dove 3 Spacecraft from the Dnepr

Arianespace orders ten new Vega launchers from ELV

NASA Commercial Crew Partner SpaceX Achieves Milestone in Safety Review

ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

CHIP TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

CHIP TECH
Overcoming Brittleness: New Insights into Bulk Metallic Glass

SlipChip Counts Molecules with Chemistry and a Cell Phone

NASA Instrument Determines Hazards of Deep-Space Radiation

$3.3 billion Canadian mining project scrapped




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement