. 24/7 Space News .
IRON AND ICE
Ceres: Water ice in eternal polar night
by Staff Writers
Gottingen, Germany (SPX) Dec 19, 2016


An image of the region near Ceres' North Pole, the colours show the varying height of the landscape. The numbers refer to ten craters where the Framing Cameras built in Gottingen have discovered water ice. Image courtesy Thomas Platz et al.:, Nature Astronomy, 1, 15. Dezember 2016.

The American Dawn space probe has been orbiting the asteroid Ceres between Mars and Jupiter since March 2015. Thanks to the two identical onboard cameras from the Max Planck Institute for Solar System Research (MPS), the Framing Cameras, the dwarf planet has been almost completely mapped. In a current study, a team headed by scientists from the MPS reports on Ceres' most northerly regions, where the Gottingen cameras have performed a very special feat: they have succeeded in taking photos of water ice deposits in places ruled by almost eternal darkness.

Thomas Platz is the lead author of the study now published in Nature Astronomy, a new specialist journal. "Using our cameras, we looked at the craters in the region near the north pole between 65 and 90 degrees north. Some of these craters are at least partially in eternal darkness which means they are never reached by sunlight.

The reason for this is that Ceres' rotational axis has an angle of inclination of only 4.028 degrees," explains the member of the Framing Camera team at the MPS. The small axial inclination means the Sun never rises far above the horizon in the sky above Ceres' polar regions.

This in turn means that obstacles such as crater walls cast long shadows; considerable areas of the polar region are even shrouded in eternal night. Although sunlight never falls directly onto these locations, tiny amounts of scattered light do reach them, reflected from directly illuminated crater walls in the vicinity, for example. The camera can use this weak light and explore the darkness. This is how it came across several bright deposits - water ice.

Hunting for ice deposits is hard work: of the 634 identified craters with permanent dark areas, ten craters with conspicuously bright spots in their interior were found in the images of the Framing Cameras. A comparatively young crater, still unnamed but provisionally called Number 2, plays a special role here; it lies 69.9 degrees north and has a diameter of 3.8 kilometres. The bright deposits there extend beyond the permanent darkness right into the area which is sometimes illuminated by direct sunlight.

"This offers the opportunity to analyse the light reflected from there with Dawn's VIR (Visible and IR Spectrometer) onboard instrument, which was supplied by the Italian space agency," explains Andreas Nathues, who heads the Framing Camera experiment at the MPS.

"We can clearly see the spectral signature of water ice, but were unable to find other frozen gases." The scientists assume that the other bright deposits are also made mainly of water ice.

Scientists have long thought that Ceres' interior contains large amounts of ice because its density is so low - 2.1621 grammes per cubic centimetre. This is now the second time that water has been found directly on the surface.

The current results join measurements from the Herschel telescope operated by the European Space Agency ESA, which measured water vapour close to Ceres in 2014. In December 2015, moreover, Max Planck researchers in Gottingen used the Framing Cameras to record patches of mist over two craters close to the equator, likewise an indication of water in vapour form.

Deposits of ice on parts of Ceres' surface which experience direct sunlight are found to be unstable over long, geological periods of time. The dwarf plant has no atmosphere and thus the ice sublimates in a relatively short period of time once it reaches the surface.

This means it passes directly from ice to the gaseous state. At places which are permanently in darkness, and thus extremely cold, where the temperatures fall below minus 163 degrees Celsius, ice can survive for a very long time.

"We know ice deposits exist in the polar regions of our Moon and the planet Mercury, both of which have no atmosphere either. These ice deposits can be explained as the result of external events such as the impacts of comets," says Nathues.

"The craters near Ceres' poles, however, contain ice which is probably indigenous to Ceres, i.e. it originates mainly from Ceres itself," explains Platz.

As the co-authors of the study of the Free University of Berlin have been able to show in a simulation, the impact which originally created the Oxo crater, for example, could have blasted away icy rock which exists below the surface and hurled it as far as the polar regions.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute for Solar System Research
Asteroid and Comet Mission News, Science and Technology






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
NASA Scientists see Asteroid through the Eyes of a Robot
Greenbelt MD (SPX) Dec 13, 2016
Retrieving an asteroid sample is no easy task. Doing the job blindfolded is even more challenging. That's why scientists equipped the OSIRIS-REx spacecraft with a set of eyes to watch it all unfold. NASA's Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) launched Sept. 8, 2016, and is travelling to a near-Earth asteroid known as Bennu, to h ... read more


IRON AND ICE
Space Network upgrade to double data rates on ISS

NASA Tech - it's all around us

NASA Communications Network to Double Space Station Data Rates

NASA's Exo-Brake 'Parachute' to Enable Safe Return for Small Spacecraft

IRON AND ICE
After glitch, NASA satellite launch set for Wednesday

NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

Technical glitch postpones NASA satellite launch

IRON AND ICE
Bremen robot team successfully simulates Mars mission in Utah

Mars Rock-Ingredient Stew Seen as Plus for Habitability

First detection of boron on the surface of Mars

A Promising Spot for Life on Mars

IRON AND ICE
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

IRON AND ICE
Telecom satellite system to encircle globe

UAE launches national space policy

Air New Zealand signs contract for Inmarsat's GX Aviation

European ministers ready ESA for a United Space in Europe in the era of Space 4.0

IRON AND ICE
This is 'year zero' of a virtual reality revolution say filmmakers

Raytheon to produce additional Air and Missile Defense Radar equipment

U.S. State Dept. approves Sea Giraffe 3D radars for the Philippines

Velodyne LiDAR makes breakthrough for tiny, low cost solid-state LiDAR sensors

IRON AND ICE
Astronomers discover dark past of planet-eating 'Death Star'

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Carbonaceous chondrites shed light on the origins of life in the universe

Atlas of the RNA universe takes shape

IRON AND ICE
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.