. | . |
Ceramic Composites Revolutionize Engine Efficiency by Nancy Smith Kilkenny for GRC News Cleveland OH (SPX) Sep 12, 2016
Lighter, faster, more efficient. Whenever you advance a technology, that's the goal. As NASA looks to transform the commercial aircraft of the future, efficient engines are at the heart of it all. To achieve the goal of better engines on future aircraft, researchers at NASA Glenn are investigating promising advances in high-temperature materials that can be used to make turbine engine components. These materials, called ceramic-matrix composites or CMCs, are lighter, stronger and can withstand the demanding forces of the extremely high temperatures generated in the core of jet engines. CMCs are in a position to replace the nickel-based super alloy metals in today's aircraft engines. In general, the hotter an engine runs, the better the fuel efficiency. Over the years, engines have been able to run hotter because metal parts were treated with thermal barrier coatings. But there is a limit to what the coatings can tolerate. CMCs, on the other hand, can withstand temperatures up to 2700 F and beyond with the help of specially designed ceramic coatings called environmental barrier coatings. "We want to understand how CMCs and protective coatings can not only withstand high heat, but also environmental particle hazards such as dust, sand and volcanic ash," says NASA Glenn Materials Engineer Valerie Wiesner. "This is important because, as aircraft engine temperatures increase to promote fuel efficiency, sand, when it's ingested into an engine, can actually melt into glass and potentially cause power loss or failure." Moving next generation aircraft toward greater operating efficiency will depend, in large part, on advances in engine technology and materials manufacturing capabilities. NASA Glenn researchers are exploring the 3D printing and testing of complex materials like CMCs to see if they can withstand the high temperature environment of future aircraft engines. This research is conducted in support of NASA's Transformative Aeronautics Concepts Program.
Related Links Aeronautics Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |