24/7 Space News
CHIP TECH
Canceling noise to improve quantum devices
illustration only
Canceling noise to improve quantum devices
by Peter Reuell | MIT Department of Nuclear Science and Engineering
Boston MA (SPX) Sep 19, 2023

For years, researchers have tried various ways to coax quantum bits - or qubits, the basic building blocks of quantum computers - to remain in their quantum state for ever-longer times, a key step in creating devices like quantum sensors, gyroscopes, and memories. A team of physicists from MIT have taken an important step forward in that quest, and to do it, they borrowed a concept from an unlikely source - noise-canceling headphones.

Led by Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering and professor of materials science and engineering, and Paola Cappellaro, the Ford Professor of Engineering in the Department of Nuclear Science and Engineering and Research Laboratory of Electronics, and a professor of physics, the team described a method to achieve a 20-fold increase in the coherence times for nuclear-spin qubits. The work is described in a paper published in Physical Review Letters. The first author of the study is Guoqing Wang PhD '23, a recent doctoral student in Cappellaro's lab who is now a postdoc at MIT.

"This is one of the main problems in quantum information," Li says. "Nuclear spin (ensembles) are very attractive platforms for quantum sensors, gyroscopes, and quantum memory, (but) they have coherence times on the order of 150 microseconds in the presence of electronic spins ... and then the information just disappears. What we have shown is that, if we can understand the interactions, or the noise, in these systems, we can actually do much better."

Extending coherence with an "unbalanced echo"
In much the same way noise-cancelling headphones use specific sound frequencies to filter out surrounding noise, the team developed an approach they dubbed an "unbalanced echo" to extend the system's coherence time.

By characterizing how a particular source of noise - in this case, heat - affected nuclear quadrupole interactions in the system, the team was able to use that same source of noise to offset the nuclear-electron interactions, extending coherence times from 150 microseconds to as long as 3 milliseconds.

Those improvements, however, may only be the beginning. More advances may be possible, says Wang, first author of the study who came up with the protection protocol, as they explore other possible sources of noise.

"In theory, we could even improve it to hundreds or even thousands of times longer. But in practice there may be other sources of noise in the system, and what we've shown is that if we can describe them, we can cancel them."

The paper will have "significant impact" on future work on quantum devices, says Dmitry Budker, leader of the Matter-Antimatter Section of the Helmholtz Institute Mainz, professor at the Johannes Gutenberg University and at the University of California at Berkeley, who was not involved in the research.

"(This group is) the world leaders in the field of quantum sensing," he says. "They constantly invent new approaches to stimulate developments in this booming field. In this work, they demonstrate a practical way to stretch nuclear coherence time by an order of magnitude with an ingenious spin-echo technique that should be relatively straightforward to implement in applications."

Cornell University professor of applied and engineering physics Gregory Fuchs calls the work "innovative and impactful."

"This (work) is important because although nuclear spin can in principle have much longer coherence lifetimes than the electron spins native to the NV centers, it has been challenging for anyone to observe long-lived nuclear spin ensembles in diamond NV center experiments," he says. "What Professor Cappellaro and her students have shown is a rather unexpected strategy for doing that. This approach can be highly impactful for applications of nuclear spin ensembles, such as for rotation sensing (a gyroscope)."

Building a sensor using "10 billion clocks"
The experiments and calculations described in the paper deal with a large ensemble - approximately 10 billion - of atomic-scale impurities in diamond known as nitrogen vacancy centers, or NV centers, each of which exists in a specific quantum spin state for the nitrogen-14 nucleus, as well as a localized electron nearby.

While they have long been identified as an ideal candidate for quantum sensors, gyroscopes, memories and more, the challenge, Wang explains, lay in working out a way to get large ensembles of NV centers to work together.

"If you think of each spin as being like a clock, these 10 billion clocks are all slightly different ... and you cannot measure them all individually," Wang says. "What we see is when you prepare all these clocks, they are initially in sync with each other at the beginning, but after some time, they completely lose their phase. We call this their de-phasing time.

"The goal is to use a billion clocks but achieve the same de-phasing time as a single clock," he continues. "That allows you to get enhancements from measuring multiple clocks, but at the same time you preserve the phase coherence, so you don't lose your quantum information as fast."

The underlying theory of temperature heterogeneity induced de-phasing, which relates to the materials properties, was first outlined in March by a team of researchers that included Li, Cappellaro, Wang, and other MIT graduate students. That paper, published in the Journal of Physical Chemistry Letters, described a theoretical approach for calculating how temperature and strain affect different types of interactions which can lead to decoherence.

The first, known as nuclear quadrupole interaction, occurs because the nitrogen nucleus acts as an imperfect nuclear dipole - essentially a subatomic magnet. Because the nucleus is not perfectly spherical, Wang explains, it deforms, disrupting the dipole, which effectively interacts with itself. Similarly, hyperfine interaction is the result of the nucleus magnetic dipole interacting with the nearby electron magnetic dipole. Both of these two types of interactions can vary spatiotemporally, and when considering an ensemble of nuclear spin qubits, de-phasing can happen since "clocks at different locations can get different phases."

Based on their earlier paper, the team theorized that, if they could characterize how those interactions were affected by heat, they would be able to offset the effect and extend coherence times for the system.

"Temperature or strain affects both of those interactions," Wang says. "The theory we described predicted how temperature or strain would affect the quadrupole and hyperfine, and then the unbalanced echo we developed in this work is essentially canceling out the spectral drift due to one physical interaction using another different physical interaction, utilizing their correlation induced by the same noise."

The key novelty of this work, compared to existing spin echo techniques commonly used in the quantum community, is to use different interaction noises to cancel each other such that the noises to be canceled can be highly selective. "What's exciting, though, is that we can use this system in other ways," he continues. "So, we could use this to sense temperature or strain field spatiotemporal heterogeneity. This could be quite good for something like biological systems, where even a very minute temperature shift could have significant effects."

Additional applications
Those applications, Wang says, barely scratch the surface of the system's potential applications.

"This system could also be used to examine electrical currents in electric vehicles, and because it can measure strain fields, it could be used for non-destructive structural health evaluation," Li says. "You could imagine a bridge, if it had these sensors on it, we could understand what type of strain it's experiencing. In fact, diamond sensors are already used to measure temperature distribution on the surface of materials, because it can be a very sensitive, high spatial resolution sensor."

Another application, Li says, may be in biology. Researchers have previously demonstrated that the use of quantum sensors to map neuronal activity from electromagnetic fields could offer potential improvements, enabling a better understanding of some biological processes.

The system described in the paper could also represent a significant leap forward for quantum memory.

While there are some existing approaches to extending the coherence time of qubits for use in quantum memory, those processes are complex, and typically involve "flipping" - or reversing the spin - of the NV centers. While that process works to reverse the spectral drift that causes decoherence, it also leads to the loss of whatever information was encoded in the system.

By eliminating the need to reverse the spin, the new system not only extends the coherence time of the qubits, but prevents the loss of data, a key step forward for quantum computing.

Going forward, the team plans to investigate additional sources of noise - like fluctuating electrical field interference - in the system with the goal of counteracting them to further increase coherence time.

"Now that we've achieved a 20-fold improvement, we're looking at how we can improve it even more, because intrinsically, this unbalanced echo can achieve an almost infinite improvement," Li says. "We are also looking at how we can apply this system to the creation of a quantum gyroscope, because coherence time is just one key parameter to building a gyroscope, and there are other parameters we're trying to optimize to (understand) the sensitivity we can achieve compared to previous techniques."

This work was supported in part by the Defense Advanced Research Projects Agency DRINQS program, the National Science Foundation, and the Defense Threat Reduction Agency Interaction of Ionizing Radiation with Matter University Research Alliance. The calculations in this work were performed in part on the Texas Advanced Computing Center and the MIT engaging cluster.

Research Report:"Characterizing Temperature and Strain Variations with Qubit Ensembles for Their Robust Coherence Protection"

Related Links
Department of Nuclear Science and Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Five things to know about British chip champion Arm
London (AFP) Sept 14, 2023
Here are five things to know about British chip designing giant Arm, which will launch a blockbuster listing on Wall Street on Thursday. The company, owned by Japan's SoftBank, is targeting a valuation of more than $52 billion on the Nasdaq stock exchange for its initial public offering (IPO), the largest New York has seen for almost two years. - Nearly all smartphones - Rather than making chips itself, Arm licenses designs for the essential component that enables devices to function. F ... read more

CHIP TECH
Two Russians, American reach space station

Rockets and Porsches: rich Russians flock to Baikonur spaceport

Soyuz hatch opens, Expedition 69 expands to 10 crewmates

NASA joins the still controversial search for UFOs

CHIP TECH
Musk biography describes troubled tycoon driven by demons

Marcus Wandt will fly to International Space Station on third Axiom Space mission

SpaceX launches 22 Starlink satellites in 65th mission of 2023

Rocket Lab signs deal with Leidos to launch 4 HASTE missions

CHIP TECH
Dusty Skies in the Cloudy Season: Sols 3950-3952

Sols 3948-3949: A Rocky Road, or Two!

Another Martian Weekend" Sols 3943-3945

Sols 3936-3939: Double the Fun

CHIP TECH
Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

China solicits names for manned lunar exploration vehicles

From rice to quantum gas: China's targets pioneering space research

CHIP TECH
Intelsat Inflight Connectivity expanded to all Airbus aircraft

Successful entry into service of Eutelsat Hotbird 13F and 13G satellites

Sidus Space announces 180-Day extension on NASDAQ minimum pricing

Intelsat Adds European Capacity with Telespazio's Fucino Space Centre in Italy

CHIP TECH
Every Gram Counts: SCHOTT Launches Lightweight Microelectronic Packages for Aerospace

Gold and mercury, not books, for Venezuela's child miners

Recycling plastic not enough, warns UN environment chief

AWS ties up with ISRO and IN-SPACe to advance India's space capabilities with cloud technologies

CHIP TECH
On the road to spotting alien life

Alleged bodies of 'non-human beings' shown in Mexican Congress

Webb discovers methane, carbon dioxide in atmosphere of K2-18 b

Scientists detect and validate the longest-period exoplanet found with TESS

CHIP TECH
Possible existence of Earth-like planet predicted in Outskirts of Solar System

SwRI will lead Hubble, Webb observations of Io, Jupiter's volcanic moon

In the service of planetary science, astrophysics and heliophysics

Mysterious Neptune dark spot detected from Earth for the first time

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.