. 24/7 Space News .
TIME AND SPACE
Can cosmic inflation be ruled out
by Staff Writers
Cambridge UK (SPX) Nov 04, 2022

Cosmic inflation is a popular scenario for the earliest phase in the evolution of the Universe.

Astrophysicists say that cosmic inflation - a point in the Universe's infancy when space-time expanded exponentially, and what physicists really refer to when they talk about the 'Big Bang' - can in principle be ruled out in an assumption-free way.

The astrophysicists, from the University of Cambridge, the University of Trento, and Harvard University, say that there is a clear, unambiguous signal in the cosmos which could eliminate inflation as a possibility. Their paper, published in The Astrophysical Journal Letters, argues that this signal - known as the cosmic graviton background (CGB) - can feasibly be detected, although it will be a massive technical and scientific challenge.

"Inflation was theorised to explain various fine-tuning challenges of the so-called hot Big Bang model," said the paper's first author Dr Sunny Vagnozzi, from Cambridge's Kavli Institute for Cosmology, and is now based at the University of Trento. "It also explains the origin of structure in our Universe as a result of quantum fluctuations.

"However, the large flexibility displayed by possible models for cosmic inflation which span an unlimited landscape of cosmological outcomes raises concerns that cosmic inflation is not falsifiable, even if individual inflationary models can be ruled out. Is it possible in principle to test cosmic inflation in a model-independent way?"

Some scientists raised concerns about cosmic inflation in 2013, when the Planck satellite released its first measurements of the cosmic microwave background (CMB), the universe's oldest light.

"When the results from the Planck satellite were announced, they were held up as a confirmation of cosmic inflation," said Professor Avi Loeb from Harvard University, Vagnozzi's co-author on the current paper. "However, some of us argued that the results might be showing just the opposite."

Along with Anna Ijjas and Paul Steinhardt, Loeb was one of those who argued that results from Planck showed that inflation posed more puzzles than it solved, and that it was time to consider new ideas about the beginnings of the universe, which, for instance. may have begun not with a bang but with a bounce from a previously contracting cosmos.

The maps of the CMB released by Planck represent the earliest time in the universe we can 'see', 100 million years before the first stars formed. We cannot see farther.

"The actual edge of the observable universe is at the distance that any signal could have travelled at the speed-of-light limit over the 13.8 billion years that elapsed since the birth of the Universe," said Loeb. "As a result of the expansion of the universe, this edge is currently located 46.5 billion light years away. The spherical volume within this boundary is like an archaeological dig centred on us: the deeper we probe into it, the earlier is the layer of cosmic history that we uncover, all the way back to the Big Bang which represents our ultimate horizon. What lies beyond the horizon is unknown."

In could be possible to dig even further into the universe's beginnings by studying near-weightless particles known as neutrinos, which are the most abundant particles that have mass in the universe. The Universe allows neutrinos to travel freely without scattering from approximately a second after the Big Bang, when the temperature was ten billion degrees. "The present-day universe must be filled with relic neutrinos from that time," said Vagnozzi.

Vagnozzi and Loeb say we can go even further back, however, by tracing gravitons, particles which mediate the force of gravity.

"The Universe was transparent to gravitons all the way back to the earliest instant traced by known physics, the Planck time: 10 to the power of -43 seconds, when the temperature was the highest conceivable: 10 to the power of 32 degrees," said Loeb. "A proper understanding of what came before that requires a predictive theory of quantum gravity, which we do not possess."

Vagnozzi and Loeb say that once the Universe allowed gravitons to travel freely without scattering, a relic background of thermal gravitational radiation with a temperature of slightly less than one degree above absolute zero should have been generated: the cosmic graviton background (CGB).

However, the Big Bang theory does not allow for the existence of the CGB, as it suggests that the exponential inflation of the newborn universe diluted relics such as the CGB to a point that they are undetectable. This can be turned into a test: if the CGB were detected, clearly this would rule out cosmic inflation, which does not allow for its existence.

Vagnozzi and Loeb argue that such a test is possible, and the CGB could in principle be detected in future. The CGB adds to the cosmic radiation budget, which otherwise includes microwave and neutrino backgrounds. It therefore affects the cosmic expansion rate of the early Universe at a level that is detectable by next-generation cosmological probes, which could provide the first indirect detection of the CGB.

However, to claim a definitive detection of the CGB, the 'smoking gun' would be the detection of a background of high-frequency gravitational waves peaking at frequencies around 100 GHz. This would be very hard to detect, and would require tremendous technological advances in gyrotron and superconducting magnets technology. Nevertheless, say the researchers, this signal may be within our reach in future.

Research Report:The Challenge of Ruling Out Inflation via the Primordial Graviton Background


Related Links
University of Cambridge
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
UNH research tests fundamental force advancing understanding of universe
Durham NH (SPX) Nov 02, 2022
Research from a team of physicists at the University of New Hampshire is advancing the understanding of how protons, which comprise 95% of the mass of the visible universe, interact with each other. The results provide a benchmark for testing the strong force, one of the four fundamental forces in nature. "There's a lot still unanswered about both of those things, the proton and the strong force," said David Ruth, Ph.D. candidate in physics and lead author. "This brings us a little bit closer to t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Resupply mission for NASA carries scientific experiments to ISS

Rice from space promises robust new varieties

First manned flight of Boeing Starliner delayed until April

How scientist developed an intelligent fuzzy logical control to stabilize solar sail?

TIME AND SPACE
Anatomy of the week the Musk tornado hit Twitter

Rocket Lab deploys 152nd satellite

NASA sounding rockets launch multiple science payloads

Arianegroup to develop Phoebus for ESA to demonstrate future Ariane 6 Carbon Upper Stage

TIME AND SPACE
University of Southern Queensland scientist unveils further proof of salty water on Mars

Mars's crust more complex, evolved than previously thought

Can't Touch This: Sol 3640

Meteorite impacts on the surface of Mars provide new details of the planet's crust

TIME AND SPACE
Astronauts enter China's Mengtian lab module for first time

China completes in-orbit maneuver to complete Tiangong space station assembly

China's Mengtian lab module docks with space station combination

New lab module to assist space station's completion

TIME AND SPACE
Rivada Space Networks issues RFP for its satellite constellation

Making History in Space

SatixFy completes business combination with Endurance Acquisition Corp

Beyond Gravity wins major contract from ULA for Amazon's Project Kuiper constellation launches

TIME AND SPACE
Turning concrete into a clean energy source

New quantum phase discovered for developing hybrid materials

Sony to begin plastic packaging phase-out next year

SpiderOak wins contract with DoD to demonstrate OrbitSecure Zero-Trust Protocol On-Orbit

TIME AND SPACE
Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

New technique to determine age will open new era of planetary science

Discovery could dramatically narrow search for space creatures

TIME AND SPACE
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.