![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Paris (ESA) Apr 28, 2021
Computer simulations show that the miniature solar flares nicknamed 'campfires', discovered last year by ESA's Solar Orbiter, are likely driven by a process that may contribute significantly to the heating of the Sun's outer atmosphere, or corona. If confirmed by further observations this adds a key piece to the puzzle of what heats the solar corona - one of the biggest mysteries in solar physics.
Mystery heating Enter Solar Orbiter, with one of its key goals to probe deeper into this mystery. Stunning detail already provided by Solar Orbiter's Extreme Ultraviolet Imager (EUI) 'first light' images just months after launch last year and since then has revealed more than 1500 small, flickering brightenings nicknamed campfires. These short-lived campfires last for between 10 and 200 seconds, and have a footprint covering between 400 and 4000 km. The smallest and weakest events, which had not been observed before, seem to be the most abundant, and represent a previously unseen fine structure of the region where the heating mystery is suspected to be rooted.
Model campfires "Our model calculates the emission, or energy, from the Sun as you would expect a real instrument to measure," explains Hardi. "The model generated brightenings just like the campfires. Furthermore, it traces out the magnetic field lines, allowing us to see the changes of the magnetic field in and around the brightening events over time, telling us that a process called component reconnection seems to be at work." Reconnection is a well-known phenomenon whereby magnetic field lines of opposite direction break and then reconnect, releasing energy when they do so. Typical reconnection happens between field lines pointing in opposite directions, but with so-called component reconnection the field lines are almost parallel, pointing in a similar direction, with reconnection therefore happening at very small angles. "Our model shows that the energy released from the brightenings through component reconnection could be enough to maintain the temperature of the solar corona predicted from observations," says Yajie. "In one of our case studies, we find that the untwisting of a flux rope [helical magnetic field lines winding around a common axis] initiates the heating instead," adds Hardi. "It's exciting to find these variations, and we're looking forward to see what further insights our models bring to help us improve our theories on the processes behind the heating." The team cautions that it's very early days. They have used the model to look at seven of the brightest events generated in their simulation, which likely correspond to the largest campfires observed by EUI. Key to advancing the study will be joint observations between EUI and the spacecraft's Polarimetric and Helioseismic Imager (PHI) and Spectral Imaging of the Coronal Environment (SPICE) spectrograph once Solar Orbiter's full science mission gets going in November. PHI will reveal the magnetic field of the Sun and how it changes on the surface, while SPICE will measure the temperature and density of the corona.
Teamwork "To our surprise, campfires are located very low in the solar atmosphere, only a few thousand kilometres above the solar surface, the photosphere," says David Berghmans, Principal Investigator of EUI. "It is very early days, and we are still learning a lot about the campfire characteristics. For example, even though campfires look like small coronal loops, their length is on average a bit short for their height, suggesting we only see part of these little loops. But our preliminary analysis also shows that campfires do not really change their height during their lifetime, setting them aside from jet-like features." Understanding the characteristics of the campfires and their place amongst other known solar phenomena will enable scientists to dive deeper into the solar corona heating problem. "How fantastic to already have such promising data that may provide insight into one of solar physics' greatest mysteries before Solar Orbiter has even begun its nominal science phase," says ESA's Solar Orbiter Project Scientist Daniel Muller. "Our mission is lucky to be building on the incredible ground-work of those that have flown before, and the theories and models already put forward over the last decades. We're looking forward to see what missing details Solar Orbiter - and the solar community working with our data - will contribute to solving open questions in this exciting field." Solar Orbiter is currently in 'cruise phase', focused primarily on instrument calibration, and will begin coordinated observations between its suite of ten remote sensing and in situ instruments from November this year. + Additional multimedia materials relating to this report are available here at ESA
![]() ![]() Scientists propose new formation mechanism for solar coronal rain Beijing, China (SPX) Apr 23, 2021 Rain is a common phenomenon on Earth. There is a similar phenomenon on the Sun, called coronal rain. It is related to the coronal heating and magnetic field, and plays a fundamental role in the mass cycle between the hot, tenuous corona and the cool, dense chromosphere. Coronal rain usually takes place in post-flare loops and the non-flaring active region coronal loops. It is generally classified into two categories: flare-driven and quiescent coronal rain, depending on its relation to the flare. ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |