![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Riverside CA (SPX) Apr 22, 2021
UC Riverside engineers are developing methods to estimate the impact of California's destructive wildfires on air quality in neighborhoods affected by the smoke from these fires. Their research, funded by NASA and the results published in Atmospheric Pollution Research, fills in the gaps in current methods by providing air quality information at the neighborhood scales required by public health officials to make health assessments and evacuation recommendations. Measurements of air quality depend largely on ground-based sensors that are typically spaced many miles apart. Determining how healthy it is to breathe air is straightforward in the vicinity of the sensors but becomes unreliable in areas in between sensors. Akula Venkatram, a professor of mechanical engineering in UC Riverside's Marlan and Rosemary Bourns College of Engineering, directed a group that developed a method to interpret fine particulate matter concentrations observed by ground-based sensors during the 2017 fire complex that included the Atlas, Nuns, Tubbs, Pocket, and Redwood Valley fires, and the 2018 Camp Fire. Their method fills in the gaps in air quality information obtained from ground-level monitors and satellite images using a mathematical model that simulates the transport of smoke from the fires. This approach provides estimates of particulate emissions from wildfires, which is the most uncertain of the inputs of other methods of interpreting the same data. These emissions combined with the physics embodied in the smoke transport model allowed the group to estimate the variation of particulate concentrations over distances as small as one kilometer. "We need better ways to measure air quality so we can let people know when and where it's safe to go out and exercise, or go stay somewhere else, for example," Venkatram said. "In addition to filling in the gaps in the data from monitoring stations and satellite images, our method can also be used to predict the next day's air quality by estimating wildfire emissions for tomorrow based on today's observations." While any smoke can make air unpleasant to breathe, it is the tiniest particles, called PM2.5, that can penetrate lung tissue and cause the most health problems. The UC Riverside model is specifically designed to predict PM2.5 concentrations in areas with insufficient coverage by air quality monitoring stations. The authors hope their work will help efforts to protect public health during California's inevitable annual wildfires.
Research Report: "Improving spatial resolution of PM2.5 measurements during wildfires"
![]() ![]() NASA study predicts less Saharan dust in future winds Greenbelt MD (SPX) Apr 21, 2021 During 2020, global average surface temperatures were the hottest on record, tying with 2016 as the warmest recorded year. Last year was also the most active hurricane season to date, with many storms quickly intensifying. Temperature and weather systems each interact with, and are influenced by, a multitude of Earth systems, each affected by the warming climate. One of those is the global transport of massive dust plumes from one continent to another. In June 2020, a "Godzilla" dust plume travell ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |