. | . |
CIBER-2 experiment successfully completes first flight by Luke Auburn for RIT News Rochester NY (SPX) Jun 23, 2021
By sending a Black Brant IX rocket on a 15-minute flight to space and back, researchers from Rochester Institute of Technology, Caltech, Kwansei Gakuin University, and Korea Astronomy and Space Science Institute glimpsed traces of light from the earliest stages of the universe. The Cosmic Infrared Background Experiment-2 (CIBER-2) completed a successful first launch on June 7 at the White Sands Missile Range in New Mexico, the first of four planned over the next several years. Led by principal investigator Michael Zemcov, an assistant professor in RIT's School of Physics and Astronomy and Center for Detectors, the experiment aims to better understand extragalactic background light, which traces the history of galaxies back to the formation of the first stars in the universe. Zemcov said data collected by the study could help resolve discrepancies about how many stars exist in the universe. "Scientists do this measurement different ways and we're having a really hard time to make the results of those different ways agree," said Zemcov. "So there's a mystery going on. Why aren't all these measurements agreeing? I think that CIBER-2 will start to unravel some of that." The experiment leverages an observational technique called intensity mapping used to study the structure of the universe. The rocket spends 6-7 minutes in space each flight, taking measurements in six infrared wavelengths to help the researchers analyze the diffuse infrared glow in our skies. Recent alumna Chi Nguyen '21 Ph.D. (astrophysical sciences and technology), whose thesis and much of her graduate career were focused on the project, called the launch exhilarating. "It feels amazing, a lot of weight off my shoulders," said Nguyen. "It's really exciting right now because we're pulling the data and I can actually see star images. I think this is a great experiment and we're doing a lot of interesting work in astronomy. It may take a while to get the science out of it but I think it has been a very successful first launch." Nguyen will next head to Caltech for a position as a postdoctoral researcher under Professor Jamie Bock, co-principal investigator of CIBER-2 and Zemcov's former mentor. Four RIT researchers spent the last several months in New Mexico helping to prepare the rocket for launch-Zemcov, Nguyen, astrophysical sciences and technology master's student Michael Ortiz, and Serena Tramm, an astrophysical sciences and technology Ph.D. student. The experiment was nearly ready for launch in February 2020 when the coronavirus pandemic brought the project to a halt. Fortunately, after sitting idle for 15 months, the device just needed a few adjustments during testing and the launch went off without incident. After launch, the researchers collected the payload, recovered the data from the on-board hard disk, and shipped the CIBER-2 device back to Rochester. In the months ahead, the team will analyze the data and make modifications in preparation for the next launch, expected this time next year. The project is part of NASA's Sounding Rockets Program, which uses rockets such as the Black Brant IX to carry scientific instruments for short sub-orbital flights at low vehicle speeds to carry out experiments. Zemcov called the program an ideal experiential learning opportunity for students. "I think part of the mission of the sounding rocket program is to be a place where we can train the next generation of space scientists in a relatively low-risk environment," said Zemcov. "The students get hands-on experience in the details of the engineering and the science and then get to think about how they would transfer those skills to bigger missions. That's part of why the program exists, and we should remember that."
Study reveals new details on what happened in the first microsecond of Big Bang Copenhagen, Denmark (SPX) May 27, 2021 About 14 billion years ago, our universe changed from being a lot hotter and denser to expanding radically - a process that scientists have named 'The Big Bang'. And even though we know that this fast expansion created particles, atoms, stars, galaxies and life as we know it today, the details of how it all happened are still unknown. Now a new study performed by researchers from University of Copenhagen reveals insights on how it all began. "We have studied a substance called Quark-Gl ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |