. | . |
CHIME Outrigger telescopes boost search for fast radio bursts by Staff Writers Montreal, Canada (SPX) Apr 06, 2022
In the quest to identify the origins of one of astronomy's biggest mysteries - fast radio bursts (FRBs) - Canada's world-renowned telescope, the Canadian Hydrogen Intensity Mapping Experiment (CHIME), is getting backup. Supported by approximately $10 million in grants from the Gordon and Betty Moore Foundation, the CHIME/FRB Outriggers project has now secured funding to complete the construction of three new radio telescopes to work in conjunction with the main CHIME instrument, located in British Columbia's Okanagan Valley. "It has been a pleasure to work with the talented team developing the outriggers for CHIME," said Robert Kirshner, Ph.D., Chief Program Officer for Science at the Gordon and Betty Moore Foundation. "Despite the burdens of COVID, interruptions in the supply of steel for the antennas, and competition with bitcoin miners for the specialized computer chips that power their computational wizardry, the CHIME team is headed toward a spectacular improvement in the scientific yield of CHIME's copious FRB discoveries."
Outriggers to sharpen CHIME's vision "The CHIME telescope can currently locate the position of a fast radio burst to a patch of sky equivalent to the size of the full Moon. With the addition of the three new outrigger telescopes, this patch of sky can be reduced to the size of a quarter held at roughly 40 km," explained Patrick Boyle, Senior Project Manager for the CHIME/FRB Outriggers project and Senior Academic Associate in the Department of Physics at McGill University. By pinpointing FRBs, the new telescopes will allow scientists to zoom in on the environments within galaxies from which the bursts originate and, in so doing, narrow down the possible explanations for their existence. "The CHIME/Outrigger Fast Radio Burst team is poised to shed even more light on one of the Universe's most exciting recent discoveries: the fleeting pulses known as fast radio bursts (FRBs)," said lead CHIME/FRB researcher Prof. Victoria Kaspi, Director of the McGill Space Institute and Professor of Physics at McGill University. "The CHIME outrigger telescopes will help us to both understand the origins of FRBs and realize their potential as cosmic probes."
CHIME's new siblings Near Princeton, British Columbia, on land kindly leased to CHIME by HML Mining Ltd., where construction of the new telescope's reflector has already been completed The other two are in the United States and result from partnerships with existing radio astronomy observatories: + The Green Bank Observatory in West Virginia, where it sits in the middle of the National Radio Quiet Zone (NRQZ). + The Hat Creek Radio Observatory in California, where the CHIME/FRB project has partnered with the SETI Institute. "Green Bank Observatory's distance from the other CHIME locations, being within the NRQZ and the pre-existing infrastructure available on our campus make this the perfect site for a new CHIME Outrigger. The instrument will benefit from the protections of radio frequency interference that the NRQZ provides. It is good to see our extensive 2,700 acre campus being used in new ways, and it is exciting to see this impressive instrument under construction," said Andrew Seymour, a Green Bank Observatory scientist working with the CHIME team on the project. "We are thrilled to welcome the world-class CHIME team to the Hat Creek Radio Observatory," said Andrew Siemion, Bernard M. Oliver Chair for SETI at the SETI Institute. "Hosting a CHIME outrigger represents a phenomenal and complementary addition to the HCRO's science mission."
Building on a successful collaboration The outrigger project has also received funding by the National Science Foundation (NSF) for the electronics as well as salaries for faculty, postdocs and graduate students located in the United States.
Tiny Star Unleashes Gargantuan Beam of Matter and Antimatter Boston MA (SPX) Mar 15, 2022 This image from NASA's Chandra X-ray Observatory and ground-based optical telescopes shows an extremely long beam, or filament, of matter and antimatter extending from a relatively tiny pulsar, as reported in our latest press release. With its tremendous scale, this beam may help explain the surprisingly large numbers of positrons, the antimatter counterparts to electrons, scientists have detected throughout the Milky Way galaxy. The panel on the left displays about one third the length of the bea ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |