24/7 Space News
ENERGY TECH
Breakthrough in waste heat to green energy
illustration only
Breakthrough in waste heat to green energy
by Staff Writers
University Park PA (SPX) May 02, 2023

In the effort to reduce our reliance on fossil fuels, one strategy involves harvesting the waste heat that is already being produced by our energy systems. Thermoelectric generators can convert waste heat to clean electricity, and a new design breakthrough may make these devices more efficient than previously possible, according to scientists at Penn State and the National Renewable Energy Laboratory.

"We have developed a unique materials design that can push the conversion efficiency of thermoelectric devices up to 15%," said Wenjie Li, assistant research professor in the Department of Materials Science and Engineering at Penn State. "This is the highest efficiency that has been recorded so far using this kind of thermoelectric technology."

Penn State researchers have been working to improve the performance of thermoelectric generators - devices that can convert differences in temperature to electricity. When the devices are placed near a heat source - like a steam pipe in a power plant - charge carriers, like electrons, moving from the hot side to the cold side produce an electric current. Thermoelectric devices have no moving parts and produce no chemical reactions or emissions, offering a promising source of clean energy, the scientists said.

The team has developed a new method for creating functionally graded materials in thermoelectric devices that enabled them to achieve 15.2% efficiency in a single-leg device with a temperature change of 670 degrees Kelvin (roughly 1206 degrees Fahrenheit). Current commercially available devices boast 5% to 6% efficiency.

The findings, recently published in the journal Advanced Materials, suggest the new approach could have a transformative impact on the design and development of next-generation thermoelectric devices, the scientists wrote.

"Because of global greenhouse gas emissions and the associated environmental issues, we want to move toward greener technologies," said Bed Poudel, research professor in the Department of Materials Science and Engineering at Penn State. "This work making thermoelectric devices more efficient can help with that goal."

Conventional thermoelectric generators have segmented designs to optimize performance on the higher- and lower-temperature sides of the device. These are often different types of materials that must be created separately and joined together by brazing or soldering. But this creates a heterogeneous interface that can reduce the device's efficiency, the scientists said.

The new approach eliminates the need for that interface because the higher- and lower-temperature side materials are created together in a single step.

"The basic idea is to integrate two or more layers using the same material family but with a slight difference in chemical compositions," Li said. "And by doing so, we can create the functionally graded materials in one step, and we don't need any brazing or soldering techniques to join them eliminating the heterogeneous interface."

The researchers used a process called electrical and mechanical field-assisted sintering to create the materials. Also known as spark-plasma sintering, the technique uses electric current and pressure to compress fine powders into a solid mass of material. Spark-plasma sintering allows scientists to create functionally graded materials by placing powders one underneath another, and to tailor those layers by adding dopants, or ingredients that can change a material's properties. This enabled the team to optimize the chemical compositions of the higher- and lower- temperature sides while using materials from the same family that can be sintered at similar temperatures in one step.

And because the materials are from the same family, they have closely matched thermal expansion and other mechanical properties, meaning the devices will have long operational life compared to conventional segmented devices, the scientists said.

"One requirement to achieve maximum conversion efficiency is that the optimum current going through the entire device is the same for the high-temperature and low temperature side," Li said. "But in the conventional design, since we used different materials systems, the electrical resistivity of these two materials may be significantly different."

Thermoelectric devices resemble a table with two legs - one leg made of p-type and one of n-type semiconductor material. The current study only applies to the p-type material, and the scientists said further work to apply this to the n-type could result in additional increases in efficiency.

Other additional work will focus on creating additional layers of the leg, each optimized for a different temperature range, using the one-step sintering approach, which could also further improve efficiency.

"What we demonstrated by generating 15% conversion efficiency is now this technology is very much competitive with other power generation technologies at the smallest scale - like small diesel generators or even solar panels," Poudel said. "We show heat energy can be converted into electricity in a competitive way with those technologies."

Other Penn State researchers on the project were Amin Nozariasbmarz, assistant research professor, and Yu Zhang and Na Liu, postdoctoral researchers.

Shashank Priya, former associate vice president for research and director of strategic initiatives and professor of materials science and engineering at Penn State, and Ravi Anant Kishore, research engineer at the National Renewable Energy Laboratory, also contributed.

The U.S. Army RIF program, the U.S. Department of Energy National Renewable Energy Laboratory, the Office of Naval Research and the National Science Foundation supported researchers involved in this research.

Research Report:Toward High Conversion Efficiency of Thermoelectric Modules through Synergistical Optimization of Layered Materials

Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
How solid air can spur sustainable development
Laxenburg, Austria (SPX) May 01, 2023
The green hydrogen economy is a sustainable alternative to fossil fuels. However, one of the challenges of constructing a global hydrogen economy is hydrogen transportation by sea. A new paper proposes solid air as a medium for recycling cold energy across the hydrogen liquefaction supply chain. The world is undergoing an energy transition to reduce CO2 emissions and mitigate climate change. The COVID-19 pandemic and the Russia-Ukraine war have further increased the interest of Europe and Western ... read more

ENERGY TECH
Russia to stay on International Space Station through 2028

Partners extend operation of International Space Station

Voyager will do more science with new power strategy

Creating new and better drugs with protein crystal growth experiments on the ISS

ENERGY TECH
A second pair of SES' O3b mPower satellites launched on a SpaceX rocket

Heavy thunderstorms force SpaceX to delay launch of Falcon Heavy rocket

Fish and Wildlife: SpaceX Starship debris covered 350 acres, no wildlife killed

Out of gas in orbit? This US space company is here to help

ENERGY TECH
Ensuring robotic arm safety during abrasions

Sols 3812-3813: Tiny Sticks Poking Out at Us

Curiosity: Move slowly and don't break things: Sols 3810-3811

NASA Retires Mineral Mapping Instrument on Mars Orbiter

ENERGY TECH
China to promote space science progress on five themes

China to develop satellite constellation for deep space exploration

China's space missions break new ground

Space exploration for betterment of humankind

ENERGY TECH
CGI to extend machine learning to LEO satellite network optimisation

Viper and T-Rex on double rocket launch

Viasat confirms ViaSat-3 Americas set to launch

ESA's technical centre expands

ENERGY TECH
Deep-learning system explores materials' interiors from the outside

Heed the reed: thatcher scientist on mission to revive craft

Researchers 3D print a miniature vacuum pump

Researchers capture first atomic-scale images depicting early stages of particle accelerator film formation

ENERGY TECH
Scientists discover rare element in exoplanet's atmosphere

UGA researchers discover new planet outside solar system

TESS celebrates fifth year scanning the sky for new worlds

New stellar danger to planets identified by Chandra

ENERGY TECH
Juice's first taste of science from space

Icy Moonquakes: Surface Shaking Could Trigger Landslides

Europe's Jupiter probe launched

Europe's JUICE mission blasts off towards Jupiter's icy moons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.