. 24/7 Space News .
STELLAR CHEMISTRY
Bowtie-funnel combo best for conducting light
by Staff Writers
Nashville TN (SPX) Aug 27, 2018

The team developed structure that's part bowtie, part funnel that conducts light powerfully and indefinitely, as measured by a scanning near field optical microscope.

Running computers on virtually invisible beams of light rather than microelectronics would make them faster, lighter and more energy efficient. A version of that technology already exists in fiber optic cables, but they're much too large to be practical inside a computer.

A Vanderbilt team found the answer in a formula familiar to college physics students - a solution so simple and elegant, it was tough for reviewers to believe. Professor Sharon Weiss, her Ph.D. student, Shuren Hu, and collaborators at the IBM T. J. Watson Research Center and University of Technology in Troyes, France, published the proof in Science Advances, a peer-reviewed, open-access journal from AAAS.

They developed a structure that's part bowtie, part funnel that concentrates light powerfully and nearly indefinitely, as measured by a scanning near field optical microscope. Only 12 nanometers connect the points of the bowtie. The diameter of a human hair is 100,000 nanometers.

"Light travels faster than electricity and doesn't have the same heating issues as the copper wires currently carrying the information in computers," said Weiss, Cornelius Vanderbilt Endowed Chair and Professor of Electrical Engineering, Physics and Materials Science and Engineering.

"What is really special about our new research is that the use of the bowtie shape concentrates the light so that a small amount of input light becomes highly amplified in a small region. We can potentially use that for low power manipulation of information on computer chips."

The team published its work as a theory two years ago in ACS Photonics, then partnered with Will Green's silicon photonics team at IBM to fabricate a device that could prove it.

The research began with Maxwell's equations, which describe how light propagates in space and time. Using two principles from these equations and applying boundary conditions that account for materials used, Weiss and Hu combined a nanoscale air slot surrounded by silicon with a nanoscale silicon bar surrounded by air to make the bowtie shape.

"To increase optical energy density, there are generally two ways: focus light down to a small tiny space and trap light in that space as long as possible," Hu said.

"The challenge is not only to squeeze a comparatively elephant-size photon into refrigerator-size space, but also to keep the elephant voluntarily in the refrigerator for a long time. It has been a prevailing belief in photonics that you have to compromise between trapping time and trapping space: the harder you squeeze photons, the more eager they are to escape."

Weiss said she and Hu will continue working to improve their device and explore its possible application in future computer platforms.


Related Links
Vanderbilt University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Light has momentum, new research confirms
Washington (UPI) Aug 21, 2018
Scientists have solved a 150-year-old mystery about the nature of light-matter interactions. Researchers were able to measure the force light exerts on matter. The breakthrough confirmed light possesses momentum, an idea first proposed by the great German astronomer Johannes Kepler in 1619. Kepler surmised the pressure of the solar rays caused comets' tails to always point away from the sun. In 1873, James Clerk Maxwell, a pioneer of mathematical physics, elaborated on the idea, claiming ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Administrator Views SLS Progress During First Visit to Marshall

What is NASA's Heat Melt Compactor?

Goonhilly and Spacebit parpace to accelerate commercial space exploration through blockchain technology

Sierra Nevada Corporation completes key step for NASA's NextSTEP-2 study

STELLAR CHEMISTRY
Stennis Begins 5th Series of RS-25 Engine Tests

RS-25 Engine Tests Modernization Upgrades

Aerojet Rocketdyne Expands Solid Rocket Motor Center of Excellence at Arkansas Facility

Student Experiments Soar with Early Morning Launch from Wallops

STELLAR CHEMISTRY
Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

Aerojet Rocketdyne delivers power generator for Mars 2020 Rover

STELLAR CHEMISTRY
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

STELLAR CHEMISTRY
Three top Russian space industry execs held for 'fraud'

ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

NASA invests in concepts for a vibrant future commercial space economy

STELLAR CHEMISTRY
Researchers develop novel process to 3D print one of the strongest materials on Earth

Specially prepared paper can bend, fold or flatten on command

Crack formation captured in 3D in real time

Researchers turn tracking codes into 'clouds' to authenticate genuine 3-D printed parts

STELLAR CHEMISTRY
Discovery of a structurally 'inside-out' planetary nebula

Under pressure, hydrogen offers a reflection of giant planet interiors

Scientists discovered organic acid in a protoplanetary disk

Iron and titanium in the atmosphere of exoplanet orbiting KELT-9

STELLAR CHEMISTRY
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.