. 24/7 Space News .
STELLAR CHEMISTRY
Borexino experiment: analysis of ten years of neutrino signals
by Staff Writers
Munich, Germany (SPX) Oct 26, 2018

New findings about the processes inside the sun.

Researchers from the Borexino collaboration have published the hitherto most comprehensive analysis of neutrinos from the Sun's core processes. The results confirm previous assumptions about the processes inside the sun.

According to the standard solar model, around 99 percent of the Sun's energy stems from a sequence of fusion processes in which hydrogen is converted to helium. It begins with the fusion of two protons into a heavy hydrogen nucleus, a process aptly called the pp chain.

In some of these processes, neutrinos of characteristic energies are also released, allowing the progression of the pp chain to be reconstructed very accurately.

First overall assessment of the Sun's neutrino spectrum
Buried deep in the mountains of the Italian Gran Sasso massif, the Borexino experiment, which focusses on detecting these solar neutrinos, has been running since 2007.

The Borexino scientists are now presenting, for the first time, a comprehensive investigation of the fusion processes in the pp chain via neutrinos. They determined the interaction rates of the individual processes with unprecedented precision.

The results substantiate the solar model
"All in all, the results confirm our theoretical perceptions of what goes on inside the Sun," says Prof. Stefan Schonert, Professor of Experimental Astroparticle Physics and Co-Spokesperson of the Collaborative Research Center 1258 at the Technical University of Munich and member of the new ORIGINS Cluster.

The Borexino scientists also calculated the Sun's energy production rate and compared this to the well-known estimate based on the Sun's electromagnetic radiation. The two values are in good agreement.

This shows that solar activity has been constant for at least one hundred thousand years, which is how long it takes sunlight to leave the energy production zone inside the Sun. Neutrinos, in contrast reach the Earth in only 8 minutes.

What is the chemical composition of the Sun?
The Borexino results also provide an interesting clue to a previously unresolved solar mystery: What is the concentration of nuclei heavier than hydrogen and helium, the so-called metallicity? The higher the concentration of heavy nuclei, the more light is absorbed. This influences the temperature, size, brightness and life of the Sun.

To date, the Sun was assumed to have low metallicity. "Our results now indicate a solar temperature profile that suggests high metallicity," summarizes Prof. Lothar Oberauer of TUM and one of the founding members of the Borexino experiment.

Research Report: "Comprehensive measurement of pp-chain solar neutrinos"


Related Links
Technical University of Munich (TUM)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
CREDO's first light: The global particle detector begins its collection of scientific data
Warsaw, Poland (SPX) Oct 05, 2018
Now everyone can become co-creator and co-user of the largest detector of cosmic ray particles in history - as well as a potential co-discoverer. All you need is a smartphone and the CREDO Detector application turned on overnight. Under development for over two years, the CREDO project is entering the era of its maturity. This week, at the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, the "first light" of the detector was presented, that is, the first data of scientific value ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Installing life support the hands-free way

Plant hormone makes space farming a possibility

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

STELLAR CHEMISTRY
US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

Russian investigators identify responsible for failed Soyuz launch

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

Probe commission rules out sabotage as possible cause of Soyuz failure

STELLAR CHEMISTRY
Minerals of the world, unite

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

Mars likely to have enough oxygen to support life: study

STELLAR CHEMISTRY
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

STELLAR CHEMISTRY
Space industry entropy

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

STELLAR CHEMISTRY
Noble metal-free catalyst system as active as platinum

Where deep learning meets metamaterials

Penetrating the soil's surface with radar

ASU team unravels key mysteries of spider silk

STELLAR CHEMISTRY
Plan developed to characterize and identify ocean worlds

Discovering a previously unknown role for a source of magnetic fields

Some planetary systems just aren't into heavy metal

Double dust ring test could spot migrating planets

STELLAR CHEMISTRY
Europa plume sites lack expected heat signatures

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.