. | . |
Borexino experiment: analysis of ten years of neutrino signals by Staff Writers Munich, Germany (SPX) Oct 26, 2018
Researchers from the Borexino collaboration have published the hitherto most comprehensive analysis of neutrinos from the Sun's core processes. The results confirm previous assumptions about the processes inside the sun. According to the standard solar model, around 99 percent of the Sun's energy stems from a sequence of fusion processes in which hydrogen is converted to helium. It begins with the fusion of two protons into a heavy hydrogen nucleus, a process aptly called the pp chain. In some of these processes, neutrinos of characteristic energies are also released, allowing the progression of the pp chain to be reconstructed very accurately.
First overall assessment of the Sun's neutrino spectrum The Borexino scientists are now presenting, for the first time, a comprehensive investigation of the fusion processes in the pp chain via neutrinos. They determined the interaction rates of the individual processes with unprecedented precision.
The results substantiate the solar model The Borexino scientists also calculated the Sun's energy production rate and compared this to the well-known estimate based on the Sun's electromagnetic radiation. The two values are in good agreement. This shows that solar activity has been constant for at least one hundred thousand years, which is how long it takes sunlight to leave the energy production zone inside the Sun. Neutrinos, in contrast reach the Earth in only 8 minutes.
What is the chemical composition of the Sun? To date, the Sun was assumed to have low metallicity. "Our results now indicate a solar temperature profile that suggests high metallicity," summarizes Prof. Lothar Oberauer of TUM and one of the founding members of the Borexino experiment.
Research Report: "Comprehensive measurement of pp-chain solar neutrinos"
CREDO's first light: The global particle detector begins its collection of scientific data Warsaw, Poland (SPX) Oct 05, 2018 Now everyone can become co-creator and co-user of the largest detector of cosmic ray particles in history - as well as a potential co-discoverer. All you need is a smartphone and the CREDO Detector application turned on overnight. Under development for over two years, the CREDO project is entering the era of its maturity. This week, at the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, the "first light" of the detector was presented, that is, the first data of scientific value ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |