. | . |
"Blue Blob" near Iceland could slow glacial melting by Staff Writers Washington DC (SPX) Feb 17, 2022
A region of cooling water in the North Atlantic Ocean near Iceland, nicknamed the "Blue Blob," has likely slowed the melting of the island's glaciers since 2011 and may continue to stymie ice loss until about 2050, according to new research. The origin and cause of the Blue Blob, which is located south of Iceland and Greenland, is still being investigated. The cold patch was most prominent during the winter of 2014-2015 when the sea surface temperature was about 1.4 degrees Celsius (2.52 degrees Fahrenheit) colder than normal. The new study uses climate models and field observations to show that the cold water patch chilled the air over Iceland sufficiently to slow ice loss starting in 2011. The model predicts cooler water will persist in the North Atlantic, sparing Iceland's glaciers until about 2050. Ocean and air temperatures are predicted to increase between 2050 and 2100, leading to accelerated melting. While cooler water in the North Atlantic offers a temporary respite for Iceland's glaciers, the authors estimate that without steps to mitigate climate change, the glaciers could lose a third of their current ice volume by 2100 and be gone by 2300. If the country's 3,400 cubic kilometers (about 816 cubic miles) of ice melt, sea level will rise by 9 millimeters (0.35 inches). "In the end, the message is still clear," said lead author Brice Noel, a climate modeler who specializes in polar ice sheets and glaciers at Utrecht University. "The Arctic is warming fast. If we wish to see glaciers in Iceland, then we have to curb the warming." The paper is published in the AGU journal Geophysical Research Letters, which publishes high-impact, short-format reports with immediate implications spanning all Earth and space sciences. Its findings may help scientists to better understand the indirect effects of the ocean on glaciers. "It's crucial to have an idea of the possible feedbacks in the Arctic because it's a region that is changing so fast," Noel said. "It's important to know what we can expect in a future warmer climate."
The warming Arctic Noel and his colleagues investigated the cause of this slowdown by estimating the glaciers' mass balance - how much they grew or melted annually from 1958 to 2019. They used a high-resolution regional climate model that works at the small scale of Iceland's glaciers to estimate how much snow the glaciers received in winter and how much ice was lost from meltwater runoff in summer. The researchers found that cooler waters near the Blue Blob are linked to observations of lower air temperatures over Iceland's glaciers and coincide with the slowdown of glacial melting since 2011. Several researchers have proposed that the Blue Blob is part of the normal sea surface temperature variability in the Arctic. Notably, especially cold winters in 2014 and 2015 led to record cooling, which caused upwelling of cold, deep water, even as ocean temperatures around the region warmed due to climate change. Before the Blue Blob, a long-term cooling trend in the same region, called the Atlantic Warming Hole, reduced sea surface temperatures by about 0.4 to 0.8 degrees Celsius (0.72 to 1.44 degrees Fahrenheit) during the last century and may continue to cool the region in the future. A possible explanation for the Warming Hole is that climate change has slowed the Atlantic Meridional Overturning Circulation, an ocean current that brings warm water up from the tropics to the Arctic, thus reducing the amount of heat delivered to the region.
The end of Iceland's glaciers? The authors verified that the models accurately reconstructed the mass of the glaciers using almost 1,200 measurements of snow depth collected between 1991 and 2019 by colleagues at the University of Iceland and satellite measurements of the elevation and extent of glaciers taken from 2002 to 2019 by co-authors at the Delft University of Technology. "I think their analysis is very thorough," said Fiamma Straneo, a physical oceanographer at the Scripps Institution of Oceanography who was not involved in the study. "They have a really state-of-the-art regional atmospheric model for looking at the variability of glaciers." Straneo thinks this approach could be used to understand changes in other glaciers that occur over land, such as in the Himalayas and Patagonia. "There is very active research in land terminating glaciers because they are one of the largest contributors to sea level rise right now."
Research Report: "North Atlantic Cooling is Slowing Down Mass Loss of Icelandic Glaciers"
Deep insights into the Arctic of tomorrow Bremerhaven, Germany (SPX) Feb 08, 2022 Hundreds of international researchers are currently analyzing observations from the one-year MOSAiC expedition, during which hundreds of environmental parameters were recorded with unprecedented accuracy and frequency over a full annual cycle in the Central Arctic Ocean. They have now published three overview articles on the MOSAiC atmosphere, snow and sea ice, and ocean programs in the journal Elementa, highlighting the importance of examining all components of the climate system together. These ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |