. 24/7 Space News .
TIME AND SPACE
Black holes helped quenching star formation in the early Universe
by Peter Laursen for Cosmic Dawn Center
Copenhagen, Denmark (SPX) Jun 02, 2022

Hundreds of galaxies are seen in this region of the sky, called COSMOS. The most distant ones are seen as small, red specks, enlarged along the edge of the image. By "adding" all these galaxies a unified signal emerges, which has led scientists on the trail of the cause of the galaxies' death (credit: NAOJ).

While some galaxies form stars at a continuous rate, others die out and lead a more passive life. What made these galaxies stop forming stars at an early age is not well established, not the least because they are so distant and faint that they evade being observed. But looking at the combined light from thousands of galaxies, a team of astronomers including the University of Copenhagen showed that black holes helped turn off star formation.

Hundreds of galaxies are seen in this region of the sky, called COSMOS. The most distant ones are seen as small, red specks, enlarged along the edge of the image. By "adding" all these galaxies a unified signal emerges, which has led scientists on the trail of the cause of the galaxies' death (credit: NAOJ).

Roughly once a year, a new star is born in our galaxy, the Milky Way.

Some galaxies form stars faster, and in the early Universe the most vigorous galaxies formed hundreds or even thousands of stars a year. However, others are somehow driven to the other extreme and completely stop forming new stars. Slowly their population of stars burn out, leaving only the small, reddish stars behind.

In particular in the early Universe, the reason for this so-called quenching is not well-established, although we know that it must have to do with the fuel for stars - cold gas - being depleted. But whether the gas is blown out of the galaxy, is heated to too high temperatures, or something else is going on, is uncertain.

Another question is why the galaxies stay quiescent: In the early Universe, the intergalactic space was full of gas which eventually should gravitate toward the galaxies, reviving star formation.

Black holes light up by swallowing gas
One possiblility is that a quiescent galaxy contains a supermassive black holes in its center, swallowing nearby matter and radiating excess energy away. This type of "active galactic nucleus" would be a low-luminosity version of the more energetic quasars. The emitted energy would nevertheless still be sufficient to heat the rest of the galaxy' gas, preventing the formation of new stars.

If this scenario is true, the galaxy should show a weak excess signal in X-ray and radio waves.

An international team of astronomers, led by postdoc Kei Ito at the SOKENDAI university in Japan, decided to test the hypothesis by digging through a catalog of galaxies observed in a particular region of the sky, dubbed the "COSMOS field".

However, Ito and his collaborators faced an inherent problem in this approach:

Because of the time it takes light time to reach us, exploring early galaxies means observing distant galaxies, billions of lightyears away. But distant galaxies are faint, and hence the signal, should it be there, is undetectable in any individual galaxy of the COSMOS catalog.

A stack of galaxies
To overcome this obstacle, the team decided to "stack" the images of the galaxies - that is, to add the light from all galaxies, looking at the combined signal from all galaxies at the same time.

"Although we lose the information about the state of any individual galaxy, we can now see their "average" properties. And the result is clear: A typical quenched galaxy 10-12 billion years ago hosted a low-luminosity, active galactic nucleus which may have played a crucial role in preventing rejuvenated star formation," explains John Weaver, PhD student at the Cosmic Dawn Center, a research center under the Niels Bohr Institute, University of Copenhagen, and DTU Space.

John Weaver is one of several from the Cosmic Dawn Center who took part in the study. He recently led the effort of collecting, cataloging, and analyzing the 1.7 million galaxies in the COSMOS field.

"Now that we know the active galactic nuclei are there, we can target the galaxies individually. Future deep follow-up observations - for instance with the new James Webb Space Telescope - will provide more evidence for our proposed scenario," concludes John Weaver.

Research Report:COSMOS2020: Ubiquitous AGN Activity of Massive Quiescent Galaxies at 0 < z < 5 Revealed by X-Ray and Radio Stacking


Related Links
University of Copenhagen - Faculty of Science
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Astronomers find hidden trove of massive black holes
Chapel Hill NC (SPX) May 25, 2022
A team led by researchers at the University of North Carolina at Chapel Hill has found a previously overlooked treasure trove of massive black holes in dwarf galaxies. The newly discovered black holes offer a glimpse into the life story of the supermassive black hole at the center of our own Milky Way galaxy. As a giant spiral galaxy, the Milky Way is believed to have been built up from mergers of many smaller dwarf galaxies. For example, the Magellanic Clouds seen in the southern sky are dwarf ga ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Moon Mission Set to Break Record in Navigation Signal Test

Bill Nelson, Mark Kelly praise how ASU involves students in missions

NASA awards two contracts for next generation spacesuits

Bezos's Blue Origin makes 5th crewed flight into space

TIME AND SPACE
Subscale booster motor for future Artemis missions fires up at Marshall

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

Ursa Major announces new engine to replace unavailable Russian-made engines

Southern Launch receives further Government funding

TIME AND SPACE
Perseverance Has a Pet Rock!

Perseverance now selects its own targets to zap

A steep but short climb: Sols 3491-3492

Bacterial cellulose enables microbial life on Mars

TIME AND SPACE
Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

China sends three astronauts to Tiangong Space Station

Shenzhou XIV astronauts transporting supplies into space station

TIME AND SPACE
China launches nine Geely-01 satellites

Axiom Space signs MOU with Italy to expand commercial utilization of space

Omnispace Spark-2 satellite launched into orbit

OneWeb satellite to be deorbited at the end of its active lifetime

TIME AND SPACE
SCOUT and LEOcloud collaborate on next gen space domain awareness services

Mitsubishi Electric develops innovative laser comms terminal

Liquid platinum at room temperature

Ancient ocean floors could help search for critical minerals

TIME AND SPACE
Geology from 50 light-years away

Close encounter more than 10,000 years ago stirred up spirals in accretion disk

Plato's cave: vacuum test for exoplanet detection

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

TIME AND SPACE
Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.