. 24/7 Space News .
TIME AND SPACE
Black holes could be like a hologram
by Staff Writers
Trieste, Italy (SPX) Jun 04, 2020

illustration only

We can all picture that incredible image of a black hole that travelled around the world about a year ago. Yet, according to new research by SISSA, ICTP and INFN, black holes could be like a hologram, where all the information is amassed in a two-dimensional surface able to reproduce a three-dimensional image.

In this way, these cosmic bodies, as affirmed by quantum theories, could be incredibly complex and concentrate an enormous amount of information inside themselves, as the largest hard disk that exists in nature, in two dimensions. This idea aligns with Einstein's theory of relativity, which describes black holes as three dimensional, simple, spherical, and smooth, as they appear in that famous image. In short, black holes "appear" as three dimensional, just like holograms. The study which demonstrates it, and which unites two discordant theories, has recently been published in Physical Review X.

The mystery of black holes
For scientists, black holes are a big question mark for many reasons. They are, for example, excellent representatives of the great difficulties of theoretical physics in putting together the principles of Einstein's general theory of relativity with those of quantum physics when it comes to gravity.

According to the first theory, they would be simple bodies without information. According to the other, as claimed by Jacob Bekenstein and Stephen Hawking, they would be "the most complex existing systems" because they would be characterised by an enormous "entropy", which measures the complexity of a system, and consequently would have a lot of information inside them.

The holographic principle applied to black holes
To study black holes, the two authors of the research, Francesco Benini (SISSA Professor, ICTP scientific consultant and INFN researcher) and Paolo Milan (SISSA and INFN researcher), used an idea almost 30 years old, but still surprising, called the "holographic principle".

The researchers say: "This revolutionary and somewhat counterintuitive principle proposes that the behavior of gravity in a given region of space can alternatively be described in terms of a different system, which lives only along the edge of that region and therefore in a one less dimension. And, more importantly, in this alternative description (called holographic) gravity does not appear explicitly. In other words, the holographic principle allows us to describe gravity using a language that does not contain gravity, thus avoiding friction with quantum mechanics".

What Benini and Milan have done "is apply the theory of the holographic principle to black holes. In this way, their mysterious thermodynamic properties have become more understandable: focusing on predicting that these bodies have a great entropy and observing them in terms of quantum mechanics, you can describe them just like a hologram: they have two dimensions, in which gravity disappears, but they reproduce an object in three dimensions".

From theory to observation
"This study," explain the two scientists, "is only the first step towards a deeper understanding of these cosmic bodies and of the properties that characterise them when quantum mechanics crosses with general relativity. Everything is more important now at a time when observations in astrophysics are experiencing an incredible development.

Just think of the observation of gravitational waves from the fusion of black holes result of the collaboration between LIGO and Virgo or, indeed, that of the black hole made by the Event Horizon Telescope that produced this extraordinary image. In the near future, we may be able to test our theoretical predictions regarding quantum gravity, such as those made in this study, by observation. And this, from a scientific point of view, would be something absolutely exceptional".

Research paper


Related Links
Scuola Internazionale Superiore Di Studi Avanzati
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
MAXI J1820+070: Black Hole Outburst Caught on Video
Huntsville AL (SPX) Jun 02, 2020
Astronomers have caught a black hole hurling hot material into space at close to the speed of light. This flare-up was captured in a new movie from NASA's Chandra X-ray Observatory. The black hole and its companion star make up a system called MAXI J1820+070, located in our Galaxy about 10,000 light years from Earth. The black hole in MAXI J1820+070 has a mass about eight times that of the Sun, identifying it as a so-called stellar-mass black hole, formed by the destruction of a massive star. (Thi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Doug Liman to direct Tom Cruise film shot in space

ISS welcomes first SpaceX Crew Dragon with NASA astronauts

NASA Networks support 1st commercial launch of NASA astronauts from US

No SpaceX T-shirts for tourists at Cape Canaveral

TIME AND SPACE
SpaceX astronaut launch: here's the rocket science it must get right

US astronauts enter space station in milestone mission

SpaceX rocket lifts off on historic private crewed flight

Russia plans rocket tests, lunar programme resumption

TIME AND SPACE
Martian moon orbit hints at ancient ring

Perseverance Mars Rover's extraordinary sample-gathering system

MAVEN maps electric currents around Mars that are fundamental to atmospheric loss

The detective aboard NASA's Perseverance Rover

TIME AND SPACE
China space program targets July launch for Mars mission

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

TIME AND SPACE
Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

New UK-based space team launches to boost sector and economy

Study explores space's impact on our daily lives

Strings of pearls in the night sky - the Starlink satellite project

TIME AND SPACE
New Observatory Will Track Near-Earth Satellites and Space Debris

CSIRO uncovers innovative approach to gold exploration

Kyoto scientists announce a 'nuclear' periodic table

Controlling artificial cilia with magnetic fields and light

TIME AND SPACE
Unusual molecular and isotopic content of planetary nebulae

In Planet Formation, It's Location, Location, Location

Astronomers predict bombardment from asteroids and comets in another planetary system

Distance from Brightest Stars Is Key to Preserving Primordial Discs

TIME AND SPACE
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.