. | . |
Black hole scientist: 'Wherever we look, we should see donuts' by Daniel Stolte for UA News Tucson AZ (SPX) May 16, 2022
Discovering something for the second time doesn't usually have scientists jump out of their seats with excitement. But that's exactly what happened in the case of Sgr A* (pronounced "sadge-ay-star"), the second black hole imaged. In 2019, the image of M87*, a supermassive black hole in a galaxy more than 50 million light-years from Earth, graced the cover pages of virtually every news outlet across the world. It was the first time an image of a black hole had ever been taken. On Thursday, the Event Horizon Telescope Collaboration presented the second image of such an object - this time of a black hole located at the center of our own Milky Way. To the casual observer, the two images of an orange glowing ring surrounding a black shadow look almost indistinguishable. Yet, it is precisely this fact that has astrophysicists gushing with awe. "I wish I could say that when we obtained the first image of a black hole three years ago, it didn't get any better, but this is actually better," said EHT Science Council member Feryal Ozel, a professor of astronomy and physics and associate dean for research at UArizona College of Science's Steward Observatory. "We see a bright ring surrounding complete darkness, the telltale sign of a black hole. Now, we can confirm we are looking directly at the point of no return."
A black hole love affair Her research culminated in a seminal paper, which she published in 2000 with Dimitrios Psaltis, a UArizona professor of astronomy and physics and principal investigator of the international Black Hole PIRE Project. In that paper and a follow-up paper published in 2001, she identified M87*, the first black hole ever to be imaged, and Sgr A* as the two ideal black holes that presented even a remote chance of having their pictures taken. This contributed to the groundwork for an Earth-sized observatory that is now the Event Horizon Telescope. Because M87* is 1,500 times more massive but 2,000 times farther away than Sgr A*, the two appear roughly equal in size in the sky. But despite the fact that they look almost identical, they are entirely different beasts. M87* boasts a mass of 6 billion suns and is of gargantuan size. Our entire solar system would fit inside its event horizon, also known as a black hole's point of no return. Sgr A*, located a mere 25,000 light-years from Earth, is puny by comparison. At "only" 4 million solar masses, it is small enough to fit into the orbit of Mercury, the planet closest to the sun. If the two black holes were lined up for a photo op, M87* would fill the frame, while Sgr A* would disappear entirely. And while M87* voraciously devours surrounding matter, perhaps entire stars, and launches a jet of energetic particles that torches across its galaxy, Sgr A*'s appetite is minimal in comparison; if it were a person, it would consume the equivalent of a grain of rice every million years, according to the researchers. One of the most fundamental predictions of Einstein's theory of gravity, Psaltis said, is that the image of a black hole scales only with its mass. A black hole 1,000 times smaller in mass than another will have a very similar image that will just be 1,000 times smaller. The same is not true for other objects, Psaltis explained. "In general, small things typically look very different from big things, and that's no coincidence," he said. "There is a good reason an ant and an elephant look very different, as one has a lot more mass to support than the other." In other words, nature's laws of scale dictate that when two entities are of vastly different sizes, they typically look different from each other. Black holes, in contrast, scale without changing their appearance. If they were elephants, they would all look like elephants, whether they were as big as a typical elephant or as tiny as an ant. Their stark simplicity is what makes the two black hole images so important, Psaltis explained, because they confirm what until now had only been predicted by theory: They appear to be the only objects in existence that only answer to one law of nature - gravity. "The fact that the light appears like a ring, with the black shadow inside, tells you it's purely gravity," Psaltis said. "It's all predicted by Einstein's theory of general relativity, the only theory in the cosmos that does not care about scale." If scientists could take a picture of a truly small black hole of about 10 solar masses - which is not possible, because even the Earth-sized EHT does not have the necessary resolution power - and compare it to M87*, which has 6 billion times the mass of the sun, the two would look very similar, according to Psaltis. "Wherever we look, we should see donuts, and they all should look more or less the same," he said, "and the reason this is important - besides the fact that it confirms our prediction - is that nobody likes it. In physics, we tend to dislike a world where things don't have an anchor point, a defined scale."
The 'Goldilocks black holes' "If you were in space looking at the black hole, you would see absolutely nothing," Ozel said. "The glow is in wavelengths the eye can't see." That is why M87* and Sgr A* were identified as the only feasible targets for the Event Horizon Telescope in the publication Ozel and Psaltis authored more than 20 years ago. "You could say both are 'Goldilocks of black holes,'" Ozel said. "Their environments are just right, and that's why we can see them." To astrophysicists like Ozel and Psaltis, black holes are natural laboratories that allow them to test general relativity and may even bring them closer to a theory unifying gravity with quantum mechanics, which until now has remained elusive. "Getting to the image wasn't an easy journey," said Ozel, who has been a member of the EHT Science Council since its inception and who has led the modeling and analysis group. It took a globe-spanning collaboration, several years, petabytes of data and more involved algorithms than had been dedicated to most scientific endeavors before, to analyze and confirm the final image of Sgr A*. Moving forward, the EHT Collaboration is particularly interested in how black holes change over time, Ozel said. "If you looked at the source one day versus the next, or one year versus the following year, how would that change, and how much light would it emit in different wavelengths?" she said. "What could we predict about that? And how could we use our observations to understand that black hole's environment? "One of the key points of this collaborative effort," Ozel said, "is to test general relativity and find out where its limit is, if there is one."
Research Report:Focus on First Sgr A* Results from the Event Horizon Telescope
Astronomers reveal first image of black hole at Milky Way's centre Paris, France (AFP) May 12, 2022 An international team of astronomers on Thursday unveiled the first image of a supermassive black hole at the centre of our own Milky Way galaxy - a cosmic body known as Sagittarius A*. The image - produced by a global team of scientists known as the Event Horizon Telescope (EHT) Collaboration - is the first, direct visual confirmation of the presence of this invisible object, and comes three years after the very first image of a black hole from a distant galaxy. Black holes are regions of s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |