|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Heidelberg, Germany (SPX) May 17, 2012
So far, astrophysicists thought that super-massive black holes can only influence their immediate surroundings. A collaboration of scientists at the Heidelberg Institute for Theoretical Studies (HITS) and in Canada and the US now discovered that diffuse gas in the universe can absorb luminous gamma-ray emission from black holes, heating it up strongly. This surprising result has important implications for the formation of structures in the universe. The results have just been published in "The Astrophysical Journal" and "Monthly Notices of the Royal Astronomical Society". Every galaxy hosts a supermassive black hole at its center. Such black holes can emit high-energy gamma rays and are then called blazars. Whereas other radiation such as visible light and radio waves traverses the universe without problems, this is not the case for high-energy gamma rays. This particular radiation interacts with the optical light that is emitted by galaxies, transforming it into the elementary particles electrons and positrons. Initially, these elementary particles move almost at the speed of light. But as they are slowed down by the ambient diffuse gas, their energy is converted into heat, just like in other braking processes. As a result, the surrounding gas is heated efficiently. In fact, the temperature of the gas at mean density becomes ten times higher, and in underdense regions more than one hundred times higher than previously thought.
A Journey into the Cosmic Youth The forest originates from the absorption of ultraviolet light by neutral hydrogen in the young universe. If the gas becomes hotter, weak lines in the forest are broadened. This effect represents an excellent opportunity to measure temperatures in the early universe, while it was still growing up. The astrophysicists at HITS checked this newly postulated heating process for the first time with detailed supercomputer simulations of the cosmological growth of structures. Surprisingly, the lines were broadened just enough so that their properties perfectly matched those of the observed lines. "This allows us to elegantly solve a long-standing problem with the quasar data", says Dr. Ewald Puchwein, who conducted the large simulations on the supercomputer at HITS.
How Black Holes Influence the Formation of Galaxies In the course of cosmic evolution, the densest fluctuations collapse to form galaxies and galaxy clusters, as observed in the local universe. Diffuse gas that is too hot cannot collapse. Hence, the formation of dwarf galaxies is slowed or even entirely suppressed. This could be the key to the solution of another long-standing problem in the theory of galaxy formation: why do we observe fewer dwarf galaxies in the vicinity of the Milky Way and in the underdense regions than predicted by cosmological simulations? Prof. Volker Springel, scientific group leader at HITS, explains: "The process of blazar heating is especially exciting since this single effect is able to simultaneously solve several different puzzles in cosmological structure formation." The group plans to further improve their simulation models for a still deeper understanding of the nature of blazar heating and its implications for today's universe. References "The Lyman-alpha forest in a blazar-heated Universe." E. Puchwein, C. Pfrommer, V. Springel, A. E. Broderick, and P. Chang, 2012, MNRAS, in print, arXiv:1107.3837 "The Cosmological Impact of Luminous TeV Blazars III: Implications for Galaxy Clusters and the Formation of Dwarf Galaxies." C. Pfrommer, P. Chang, and A. E. Broderick, 2012, ApJ, in print, arXiv:1106.5505 "The Cosmological Impact of Luminous TeV Blazars II: Rewriting the Thermal History of the Intergalactic Medium." P. Chang, A. E. Broderick, and C. Pfrommer, 2012, ApJ, in print, arXiv:1106.5504 "The Cosmological Impact of Luminous TeV Blazars I: Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background." A. E. Broderick, P. Chang, and C. Pfrommer, 2012, ApJ, in print, arXiv:1106.5494
Related Links Heidelberg Institute for Theoretical Studies (HITS) Understanding Time and Space
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |