. | . |
Black Holes Might Not be Dead-ends After All by Staff Writers Lisbon Portugal (SPX) Jun 09, 2016
A physical body might be able to cross a wormhole, in spite of the extreme tidal forces, suggests a new study by Rubiera-Garcia, of Instituto de Astrofisica e Ciencias do Espaco (IA , and his team. This result, published in the journal Classical and Quantum Gravity, is supported by the fact that the interactions between the different parts of the body, which hold it together, are preserved. The team was invited by the journal editors to write an insight article that was published online this week. In their previous work, the authors arrived at theoretical descriptions of black holes without a singularity, that bizarre and infinitesimally small point where space and time ends abruptly. What they found at the centre of a black hole, and without actually being in search of one, was a spherical and finite size wormhole structure. Diego Rubiera-Garcia, of IA and Faculdade de Ciencias da Universidade de Lisboa, commented on how the team solved the singularity problem: "What we did was to reconsider a fundamental question on the relation between the gravity and the underlying structure of space-time. In practical terms, we dropped one assumption that holds in general relativity, but there is no a priori reason for it to hold in extensions of this theory." Presented with this wormhole structure of finite size, where space and time continue past and beyond the black hole and into another part of the Universe, the authors then inquired about the fate of a physical object venturing into it. They asked if a chair, a scientist, or a spacecraft, would withstand the intense gravitational field and retain its unity as a body through the journey, and also to what extent would be the damage. In their study, a physical body approaching a black hole is analysed as an aggregation of points interconnected by physical or chemical interactions holding it together. "Each particle of the observer follows a geodesic line determined by the gravitational field. Each geodesic feels a slightly different gravitational force, but the interactions among the constituents of the body could nonetheless sustain the body," Rubiera-Garcia said. General relativity theory predicts that a body approaching a black hole will be crushed along one direction and stretched along another. As the wormhole radius is finite, the authors demonstrate that the body will be crushed just as much as the size of the wormhole. Instead of converging to an infinitesimal separation, the so called singularity, geodesic lines will still be apart by a distance greater than zero. In their work, the authors show that the time spent by a light ray in a round trip between two parts of the body is always finite. Thus, different parts of the body will still establish physical or chemical interactions and, consequently, cause and effect still apply all the way across the throat of the wormhole. We can then imagine that finite forces, no matter how strong they would have to be, could compensate for the impact of the gravitational field near and inside the wormhole on a physical body traversing it. At least, according to these study, there isn't anything beyond all hopes, and the passage to another region of the Universe might be feasible. Francisco Lobo, of IA and Faculdade de Ciencias da Universidade de Lisboa, leader of the Cosmology group at IA, said: "The authors' insights into the concepts of space-time singularities and curvature divergences are representative of the fundamental theoretical research carried out at the IA, going beyond Einstein's General Relativity. This research will also probably be important to understand these difficult concepts for the fate of the Universe, in a plethora of cosmological models." Research paper: "Wormholes can fix black holes"
Related Links Instituto de Astrofisica e Ciencias do Espaco Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |