|
. | . |
|
by Staff Writers Munich, Germany (SPX) Jul 10, 2015
Gamma-ray bursts are one of the outcomes associated with the biggest explosions to have taken place since the Big Bang. They are detected by orbiting telescopes that are sensitive to this type of high-energy radiation, which cannot penetrate the Earth's atmosphere, and then observed at longer wavelengths by other telescopes both in space and on the ground. GRBs usually only last a few seconds, but in very rare cases the gamma rays continue for hours. One such ultra-long duration GRB was picked up by the [Swift satellite] - on 9 December 2011 and named GRB 111209A. It was both one of the longest and brightest GRBs ever observed. As the afterglow from this burst faded it was studied using both the GROND instrument on the MPG/ESO 2.2-metre telescope at La Silla and also with the X-shooter instrument on the [Very Large Telescope] - (VLT) at Paranal. The clear signature of a supernova, later named SN 2011kl, was found. This is the first time that a supernova has been found to be associated with an ultra-long GRB. The lead author of the new paper, Jochen Greiner from the Max-Planck-Institut fur extraterrestrische Physik , Garching, Germany explains: "Since a long-duration gamma-ray burst is produced only once every 10 000-100 000 supernovae, the star that exploded must be somehow special. Astronomers had assumed that these GRBs came from very massive stars - about 50 times the mass of the Sun - and that they signalled the formation of a black hole. But now our new observations of the supernova SN 2011kl, found after the GRB 111209A, are changing this paradigm for ultra-long duration GRBs." In the favoured scenario of a massive star collapse (sometimes known as a collapsar) the week-long burst of optical/infrared emission from the supernova is expected to come from the decay of radioactive nickel-56 formed in the explosion. But in the case of GRB 111209A the combined GROND and VLT observations showed unambiguously for the first time that this could not be the case. Other suggestions were also ruled out. The only explanation that fitted the observations of the supernova following GRB 111209A was that it was being powered by a magnetar - a tiny neutron star spinning hundreds of times per second and possessing a magnetic field much stronger than normal neutron stars, which are also known as radio pulsars. Magnetars are thought to be the most strongly magnetised objects in the known Universe. This is the first time that such an unambiguous connection between a supernova and a magnetar has been possible. Paolo Mazzali, co-author of the study, reflects on the significance of the new findings: "The new results provide good evidence for an unexpected relation between GRBs, very bright supernovae and magnetars. Some of these connections were already suspected on theoretical grounds for some years, but linking everything together is an exciting new development." "The case of SN 2011kl/GRB 111209A forces us to consider an alternative to the collapsar scenario. This finding brings us much closer to a new and clearer picture of the workings of GRBs," concludes Jochen Greiner. This research was presented in a paper entitled "A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst", by J. Greiner et al., to appear in the journal Nature on 9 July 2015.
Related Links ESO Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |