![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Tokyo, Japan (SPX) Sep 15, 2021
As the global climate continues to change and extreme weather events increasingly threaten regions all over the world, accurate weather forecasting is becoming more important than ever. In a new study published in Scientific Reports, a research team led by Institute of Industrial Science, The University of Tokyo reports that weather forecast accuracy can be improved by several percentage points if satellite observations of water vapor isotope compositions are incorporated into a general circulation model. Different isotopes of hydrogen and oxygen make individual water molecules heavier or lighter, and weather processes like evaporation and precipitation influence the distributions of these isotopes. These isotopes have potential to reveal the weather system, but have generally been neglected in meteorological models because of the relative scarcity of isotope data compared with conventional weather measurements like temperature and wind speed. However, advances in satellite technology have made it possible to fill this gap and improve forecasting ability. For this study, the researchers used water vapor isotope data from the Infrared Atmospheric Sounding Interferometer (IASI), a satellite-based spectrometer that observes water vapor data in the mid-troposphere between 60S to 60N twice a day. Measurements from an altitude of 4.5 km were used because this altitude was where the isotope measurements were most reliable. "A local ensemble transform Kalman filter was used to assimilate the IASI data into the forecasting model" study first author Masataka Tada explains. "Almost 230,000 data points measured during April 2013 were used in the assimilation experiments. We used the Isotope-incorporated Global Spectral Model (IsoGSM) as the forecasting model." Experiments were conducted to determine how incorporating these isotope data affected the modeling of other weather variables at both the global and local scales. The global experiment showed improved model skill, especially in the mid-latitudes and in the Northern Hemisphere. Most weather variables showed improved modeling, especially air temperature and specific humidity. To test the model in a local setting, the researchers investigated a low-pressure event over Japan that occurred in April, 2013. With the water vapor isotope data included, the model was better able to simulate the overall pressure pattern of this event. According to study senior and corresponding author Kei Yoshimura, "Ours is the first study to assimilate real satellite observations of water vapor isotopes with a general circulation model and examine the effects on the modeling of both global and local dynamics. With the improvements we observed, and with the increasing availability of satellite isotope measurements, we expect further improvements to weather forecasting in the future based on isotope data." forecasting
Research Report: "Improving weather forecasting by assimilation of water vapor isotopes"
![]() ![]() Meteosat Gen 3 takes major step towards its first launch Paris (ESA) Sep 03, 2021 After many technical and programmatic challenges, the first satellite of the next generation of the Meteosat family has taken a major step towards its first flight, currently scheduled for launch in autumn 2022. Following on from the success of the first and second generation of Meteosat satellites, the Meteosat Third Generation (MTG) will soon take over the reins to ensure the continuity of data for weather forecasting for the next two decades. The new generation of weather satellites will ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |