24/7 Space News
IRON AND ICE
Berkeley Lab helps explore mysteries of Asteroid Bennu
illustration only
Berkeley Lab helps explore mysteries of Asteroid Bennu
by Lauren Biron for Berkeley News
Berkeley CA (SPX) Jan 30, 2025

During the past year, there's been an unusual set of samples at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab): material gathered from the 4.5-billion-year-old asteroid Bennu when it was roughly 200 million miles from Earth.

Berkeley Lab is one of more than 40 institutions investigating Bennu's chemical makeup to better understand how our solar system and planets evolved. In a new study published in the journal Nature, researchers found evidence that Bennu comes from an ancient wet world, with some material from the coldest regions of the solar system, likely beyond the orbit of Saturn.

The asteroid contained a set of salty mineral deposits that formed in an exact sequence when a brine evaporated, leaving clues about the type of water that flowed billions of years ago. Brines could be a productive broth for cooking up some of the key ingredients of life, and the same type of minerals are found in dried-up lake beds on Earth (such as Searles Lake in California) and have been observed on Jupiter's moon Europa and Saturn's moon Enceladus.

"It's an amazing privilege to be able to study asteroid material, direct from space," said Matthew Marcus, a Berkeley Lab scientist who runs the Advanced Light Source (ALS) beamline where some of the samples were studied and who wrote one of the programs used to analyze their chemical composition. "We have highly specialized instruments that can tell us what Bennu is made of and help reveal its history."

The samples from Bennu were gathered by NASA's OSIRIS-REx mission, the first U.S. mission to return samples from an asteroid. The mission returned nearly 122 grams of material from Bennu - the largest sample ever captured in space and returned to Earth from an extraterrestrial body beyond the Moon.

Marcus teamed up with Scott Sandford from NASA Ames Research Center and Zack Gainsforth from the UC Berkeley Space Sciences Laboratory to study the Bennu sample using scanning transmission X-ray microscopy (STXM) at the ALS. By varying the energy of the X-rays, they were able to determine the presence (or absence) of specific chemical bonds at the nanometer scale and map out the different chemicals found in the asteroid. The science team discovered that some of the last salts to evaporate from the brine were mixed into the rock at the finest levels.

"This sort of information provides us with important clues about the processes, environments, and timing that formed the samples," Sandford said. "Understanding these samples is important, since they represent the types of materials that were likely seeded on the surface of the early Earth and may have played a role in the origins and early evolution of life."

At Berkeley Lab's Molecular Foundry, researchers used a beam of electrons to image the same Bennu samples with transmission electron microscopy (TEM). The Foundry also helped prepare the samples for the experiments run at the ALS. Experts used an ion beam to carve out microscopic sections of the material that are about a thousand times thinner than a sheet of paper.

"Being able to examine the same exact atoms using both STXM and TEM removed many of the uncertainties in interpreting our data," Gainsforth said. "We were able to confirm that we really were seeing a ubiquitous phase formed by evaporation. It took a lot of work to get Bennu to give up its secrets, but we are delighted with the final result."

This is not the first time the ALS and Molecular Foundry have studied material from space. Researchers also used the two facilities to investigate samples from the asteroid Ryugu, building up our understanding of our early solar system. And there's still more to come, with additional studies of Bennu at both the STXM and infrared beamlines at the ALS planned for the coming year.

Berkeley Lab researchers also contributed to a second paper published in Nature Astronomy that analyzed organic materials found on the asteroid. Within the Bennu sample, the science team identified 14 of the 20 amino acids that life on Earth uses to build proteins. They also found all five nucleobases, the ring-shaped molecules that form DNA and RNA, as well as ammonia, which on Earth might have helped spark the emergence of early life.

The results support the idea that asteroids like Bennu may have delivered water and essential chemical building blocks of life to Earth in the distant past. Based on the similarities between asteroid Bennu and the icy dwarf planets and moons of our outer solar system, these potential ingredients for life could be widespread.

Research Report:An evaporite sequence from ancient brine recorded in Bennu samples

Related Links
OSIRIS-REx
Asteroid and Comet Mission News, Science and Technology

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
IRON AND ICE
ESA Monitoring Potential Threat from Near-Earth Asteroid 2024 YR4
Paris, France (SPX) Jan 30, 2025
The European Space Agency's (ESA) Planetary Defence Office is closely tracking asteroid 2024 YR4, a newly discovered near-Earth object that has a minimal chance of impacting Earth in December 2032. Asteroid 2024 YR4 was first detected on December 27, 2024, by the Asteroid Terrestrial-impact Last Alert System (ATLAS) telescope in Rio Hurtado, Chile. Following its discovery, automated asteroid warning systems identified a very small potential for the object to impact Earth on December 22, 2032. With ... read more

IRON AND ICE
ISS Crew Demonstrates Robotics and Monitors Environmental Conditions

Europa Clipper Charts Course to Jupiter With First Stellar Snapshots

Will the US get to Mars quicker if it drops or delays plans to visit the Moon?

Crew Wraps Spacewalk Duties and Expands Crop Research in Orbit

IRON AND ICE
Airbus-built SpainSat NG-I satellite successfully launched

KAIST develops AI-driven performance prediction model to advance space electric propulsion technology

Ride completes Deep Blue mission marking new chapter in satellite launch services

Ariane 6 to deliver inaugural Galileo 2nd Gen satellites as European industy backs Arianespace

IRON AND ICE
Texas A&M scholar secures NASA funding to examine Martian dune dynamics

Meteor collision shakes Mars recorded by InSight

New Martian Crater Reveals Far-Reaching Seismic Signals

Approaching the Red Planet from the Kitchen

IRON AND ICE
Chinese Satellite Companies Expand Global Services with Advanced Networks and Constellations

Astronaut insights from mid mission aboard Tiangong

China launches additional satellites for Spacesail Constellation

Shenzhou XIX crew completes second spacewalk mission

IRON AND ICE
UK Gains Advanced Space Simulation Facility from Amentum

SiriusXM's SXM-9 Satellite Begins Full Operation After Successful Testing

York Space Systems Expands Satellite Offerings with Enhanced M-CLASS Platform

NASA Pioneers Autonomous Tools for Satellite Swarms

IRON AND ICE
Orbex lands D-Orbit deal prior to first mission this year

Astroscale second generation docking plate gains flight heritage

EdgeCortix unveils SAKURA-I with proven radiation immunity for orbital and lunar ventures

SPACE ISAC expands member benefits with access to new testbeds network

IRON AND ICE
PLATO mission set for late 2026 launch aboard Ariane 6

Scientists measure Earth's cosmic detectability

Asteroid Bennu comes from a long-lost salty world with ingredients for life

IGRINS on Gemini South Detects Surprising Signatures in Dynamic Atmosphere of Exoplanet WASP-121b

IRON AND ICE
New Study Suggests Trench-Like Features on Uranus' Moon Ariel May Be Windows to Its Interior

NASA Juno Mission Discovers Record-Breaking Volcanic Activity on Io

SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.