. | . |
BepiColombo Slows Down at Venus En Route to Mercury by Staff Writers Berlin, Germany (SPX) Oct 16, 2020
Approaching Venus from its day side, passing the planet, using its gravitational pull to slow down and continuing on its night side on course for Mercury: on Thursday 15 October 2020, at 05:58 CEST [03:58 UTC], ESA's BepiColombo spacecraft flew past Venus at a distance of approximately 10,720 kilometres and transfered some of its kinetic energy to our neighbouring planet in order to reduce its own speed. Two years post launch, the purpose of the manoeuvre was to lower BepiColombo's orbit around the Sun towards the orbit of Mercury. The two-orbiter spacecraft of the European Space Agency (ESA) and the Japanese Space Agency (JAXA) are part of a joint mission that will reach this point after another flyby of Venus in August 2021. Following six close flybys of Mercury, the mission will then enter orbit around the innermost planet at the end of 2025. For planetary researchers and engineers at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and for the Institute of Planetology at the University of Muenster, the Venus flyby is another opportunity to test BepiColombo's MErcury Radiometer and Thermal Infrared Spectrometer (MERTIS).
View of the Venus Gas Envelope with Infrared Sensors "Our imaging spectrometer MERTIS, which we built together with industry and international partners, will be used again to make these measurements," says Helbert. MERTIS was primarily developed to measure spectra of rock-forming minerals on Mercury's atmosphere-free surface. But with its infrared sensors, it can also look into the dense gas envelope of Venus down to a certain depth. "We are already expecting some very interesting findings, with more to follow in 2021, when we will be much closer to Venus," adds Hiesinger. MERTIS is an imaging infrared spectrometer and radiometer with two uncooled radiation sensors that are sensitive to wavelengths of 7 to 14, and 7 to 40 micrometres, respectively. During two series of measurements, the first of which begins today, MERTIS will capture almost 100,000 individual images. The first series will begin as the spacecraft approaches from a distance of approximately 1.4 million kilometres from Venus up to a distance of 670,000 kilometres. After a pause to check the instrument, the second series will start at a distance of 300,000 kilometres, 11 hours before the Venus flyby, and will continue until BepiColombo is almost 120,000 kilometres from Venus four hours before the closest approach of the flyby.
Venus as the Focus of Planetary Research "These would be detected, for example, through the sulphur dioxide that they emit," says Helbert. "Following the first measurements made in the 1960s and 1970s, about ten years ago, ESA's Venus Express mission recorded a massive reduction, by more than half, of sulphur dioxide concentrations. Venus literally 'smells' of active volcanoes! MERTIS could now provide us with new information." The experiments will be complemented by simultaneous observations from the Japanese Venusian orbiter, Akatsuki, and from a dozen professional telescopes as well as information from amateur astronomers on Earth. Venus only recently came under the spotlight of science and the media when a group of astronomers used telescopes in Hawaii and Chile to prove beyond doubt the presence of the trace gas phosphine (or monophosphane, chemical formula PH3) on Venus. Phosphine is industrially manufactured on Earth for use in pest control but is also produced by biological processes in sapropel or in the digestive tract of vertebrates. Phosphine is a very short-lived molecule, so there must be a current source of the molecule on Venus or in its atmosphere. Previous modelling of natural phosphine sources such as volcanism, chemical reactions following meteorite impacts or lightning discharges have not been able to explain the measured concentrations. This is why the possibility that the phosphine is produced by microorganisms high up in Venus's atmosphere is frequently debated by planetary researchers. This finding could suggest that life exists in the temperate 'flying carpets' of sulphuric acid clouds that exist at altitudes of 40 to 60 kilometres. The authors of the study themselves question this idea, however, and indicate the need for further measurements in the future. In the future, Venus will be the target of ESA and NASA missions.
Venus, an Exoplanet on Our Doorstep "Now we are pointing MERTIS towards a planet for the first time. This will allow us to make comparisons with measurements taken prior to the launch of BepiColombo, to optimise operation and data processing, and to gain experience for the design of future experiments." All experiments will focus on measuring the composition, structure and dynamics of the atmosphere of Venus, the ionosphere of the planet and - using the instruments on the Japanese MMO (Mercury Magnetospheric Orbiter) - the induced magnetosphere of Venus.
Saving Fuel with Planetary Flybys Due to the Sun's strong gravitational pull, planetary missions to the inner Solar System can only be achieved with very complex trajectories. With the manoeuvre on Thursday, the spacecraft's relative speed compared to Mercury will be reduced to 1.84 kilometres per second. At the end of its spiraled flight between the orbits of Earth and Mercury, BepiColombo will orbit the Sun at almost the same speed as Mercury. It will then easily be captured by the gravity of the smallest planet in the Solar System on 5 December 2025 and will manoeuvre itself into a polar orbit. BepiColombo was launched on 20 October 2018 on board an Ariane 5 launch vehicle from the European spaceport in Kourou. The use of flyby manoeuvres was first implemented during NASA's Mariner 10 mission, enabling the spacecraft to make two additional close flybys of Mercury after it had already travelled past the planet once. The calculations were made by Italian engineer and mathematician Giuseppe 'Bepi' Colombo, a professor at the University of Padua. Colombo was invited to a conference in preparation for the Mariner 10 mission at NASA's Jet Propulsion Laboratory in Pasadena, California, in 1970. After seeing the original mission plan, he realised that a highly precise first flyby could allow for two additional flybys of Mercury. The current European-Japanese Mercury mission was named in his honour.
MESSENGER Shows How a Spacecraft Could End Neutron Lifetime Stalemate Laurel MD (SPX) Jun 12, 2020 Neutrons aren't a model of resilience when it comes to living a single life. Strip one from an atom's nucleus and it will quickly disintegrate into an electron and a proton. But scientists can't determine how quickly, despite decades of trying, and that's problematic because knowing that lifetime is key to understanding the formation of the elements after the Big Bang. Now, a team of researchers from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Durham University in E ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |