. | . |
BepiColombo Earth flyby enables unique instrument scan of Moon by Staff Writers Cologne, Germany (SPX) Apr 07, 2020
Space exploration missions require precision of the highest order. In the early hours of 10 April 2020, the European Space Agency's (ESA) BepiColombo spacecraft will fly towards Earth at over 30 kilometres per second. At 06:25 CEST it will make its closest approach, over the South Atlantic, at an altitude of 12,677 kilometres. The spacecraft will then fly further towards the centre of the Solar System, travelling somewhat more slowly than when it arrived. This is a unique opportunity for planetary researchers and engineers at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and the Institute for Planetology at the Westphalian Wilhelms University of Munster to conduct a unique experiment, where they will study the Moon. As early as 9 April, with its Earth-facing side illuminated by the Sun, the Moon will be observed for the first time in the thermal infrared and examined for its mineralogical composition using the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) instrument, developed and built at DLR. This will be possible because there will be no absorption by Earth's atmosphere. At Mercury, MERTIS will investigate the composition and mineralogy of Mercury's surface and investigate the planet's interior. The scientific evaluation of the data will then be carried out jointly at participating institutes in Munster, Berlin, Gottingen and Dortmund, as well as several locations in Europe and the USA. The main purpose of the Earth flyby is to slow down BepiColombo somewhat without expending propellant, in order to bring the spacecraft onto a trajectory towards Venus. During its flight towards Earth, on its spiral orbit through the inner Solar System, it will travel at a speed of 30.4 kilometres per second. As it moves away from Earth, BepiColombo be travelling at a speed of approximately 25 kilometres per second. With two subsequent close flybys of Venus (the first flyby will take place on 16 October 2020), BepiColombo will then be on a trajectory that will take it to the final destination of the six-year journey, an orbit around Mercury, the innermost planet of the Solar System. Due to the enormous gravitational field of the Sun and the limited transport capacity of the available launchers, planetary missions to the inner and outer Solar System can only be accomplished by following very complex trajectories.
Unique possibility to observe the Earth-facing side of the Moon This is also an excellent opportunity to test how well our instrument works and to gain experience in preparation for operations in Mercury orbit." The current situation with the Coronavirus pandemic is also putting the team to the test. "Our team will support the MERTIS instrument from our home offices and process and evaluate the data there," Helbert adds. "This has been tested several times over the last few days and 'data evaluation at the kitchen table' seems to work well." MERTIS has two uncooled radiation sensors. Its spectrometer covers a wavelength range from seven to 14 micrometres, and its radiometer to a wavelength range from seven to 40 micrometres. It will identify rock-forming minerals in the mid-infrared at a spatial resolution of 500 metres. "We will not be able to obtain such a detailed resolution when observing the Moon," explains Gisbert Peter, MERTIS Project Manager at the DLR Institute of Optical Sensor Systems, which was responsible for the design and construction of MERTIS. "Having the Moon in the spectrometer's field of view before the flyby is partly an astronomical or geometric 'coincidence' and, above all, due to good planning. MERTIS will observe the Moon from distances of between 740,000 and 680,000 kilometres for four hours." Here, the instrument, which is very compact at 3.3 kilograms, will be able to demonstrate its unique optical properties for the first time in orbit. Three small cameras on the exterior of the BepiColombo spacecraft will also acquire images of Earth during the approach. "The Moon and Mercury are not dissimilar in size, and their surfaces resemble one another in many ways," explains Harald Hiesinger from the University of Munster, Principal Investigator for the MERTIS experiment. After decades of lunar research, he is particularly looking forward to the new measurements. "We will obtain new information on rock-forming minerals and the temperatures on the lunar surface and will later be able to compare the results with those acquired at Mercury. The Moon and Mercury are two important bodies that are fundamental to enhancing our understanding of the Solar System," Hiesinger adds: "I am anticipating many exciting results from the observations with MERTIS. After about 20 years of intensive preparations, the time will finally come on Thursday - our long wait will be over, and we will receive our first scientific data from space."
Third mission to Mercury While MPO is designed to analyse the planetary surface and composition, MMO will explore its magnetosphere. Further goals of the mission are the investigation of the solar wind, the internal structure and the planetary environment of Mercury, and its interaction with the near-solar environment. Scientists also hope to gain insights into the formation of the Solar System, and Earth-like planets in particular. Until they reach Mercury orbit, the two spacecraft will travel as part of the Mercury Composite Spacecraft (MCS). This includes the Mercury Transfer Module (MTM), which supplies the orbiters with power and protects them from the extreme temperatures as they approach and fly past Mercury. MCS is also equipped with the Magnetospheric Orbiter Sunshield and Interface Structure (MOSIF), which will further protect the MMO before it enters orbit. Surface temperatures on Mercury range between 430 degrees Celsius on the day side and minus 180 degrees Celsius on the night side. On 5 December 2025, after six flybys of Mercury, the MPO, MMO and MOSIF will enter an initial capture orbit.
Juggling gravity and velocity Close flybys of planets enable an elegant technical solution. If a spacecraft approaches a planet, that planet's gravitational attraction prevails over that of the Sun at a certain distance, influencing its movement. In a sense, a flyby is the juggling of two forms of energy - the kinetic energy of the spacecraft and the planet's potential energy, which, with its much greater mass, attracts the small spacecraft during its approach. With this juggling, depending on the spacecraft's velocity and proximity to the planet, energy can be transferred from the planet to the spacecraft, or vice versa. The visitor then either begins to travel faster (and the planet slows down imperceptibly) or, with kinetic energy being transferred from the spacecraft to the planet, the craft slows down (and imperceptibly accelerates the planet in return). The speed of the spacecraft does not change in relation to the planet; its overall velocity and trajectory are only modified. However, since the planet is in orbit around the Sun, this change in the trajectory of the spacecraft causes it (and minimally the planet) to accelerate or slow down on their orbits around the Sun.
The ingenious trajectory solution proposed by Giuseppe 'Bepi' Colombo There, he saw the original mission plan and realised that, with a highly precise first flyby, two more close flybys of Mercury were possible. The current European-Japanese mission to Mercury was named in his honour. Of the 15 instruments on board the two orbiters, three were largely developed in Germany: BELA (BepiColombo Laser Altimeter), MPO-MAG (MPO Magnetometer) and MERTIS. The DLR laser experiment BELA will only be operated when the spacecraft reaches its destination. The magnetometer is already being used to carry out measurements during the flight through Earth's magnetosphere, which extends far into space. Funded by the DLR Space Administration, it was developed and built at the Institute for Geophysics and Extraterrestrial Physics at TU Braunschweig in collaboration with the Graz Space Research Institute and Imperial College London.
Last chance to see 'Bepi' - but not in Europe However, this will only be possible south of 30 degrees north over the Atlantic, in South America, Mexico and, with some restrictions, over Texas and California. The solar panels, illuminated by sunlight, will probably be most visible above the European Southern Observatory in the clear air of the Chilean Andes. In Central Europe, the consolation remains that on the night of 7 to 8 April, there will be an exceptionally large full Moon, commonly referred to as a 'supermoon'.
Europe to Conduct BepiColombo Flyby Amid Coronavirus Crisis Paris (ESA) Mar 31, 2020 Controllers at ESA's mission control centre are preparing for a gravity-assist flyby of the European-Japanese Mercury explorer BepiColombo. The manoeuvre, which will see the mission adjust its trajectory by harnessing Earth's gravitational pull as it swings past the planet, will be performed amid restrictions ESA has implemented in response to the coronavirus pandemic. BepiColombo, launched in October 2018, is currently orbiting the Sun at a similar distance as Earth. On 10 April, at about 06:25 a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |