. | . |
Bennu's boulders shine as beacons for NASA's OSIRIS-REx by Brittany Enos for UA News Tucson AZ (SPX) Mar 10, 2020
This summer, the OSIRIS-REx spacecraft will undertake NASA's first-ever attempt to touch the surface of an asteroid, collect a sample of it, and safely back away. But since arriving at asteroid Bennu over a year ago, the mission team has been tackling an unexpected challenge: how to accomplish this feat at an asteroid whose surface is blanketed in building-sized boulders. Using these hazardous boulders as signposts, the mission team developed a new precision navigation method to overcome the challenge. The OSIRIS-REx team had originally planned to use a LIDAR system to navigate to Bennu's surface during the Touch-And-Go (TAG) sample collection event. LIDAR is similar to radar, but it uses laser pulses rather than radio waves to measure distance. The OSIRIS-REx Guidance, Navigation, and Control (GNC) LIDAR is designed to navigate the spacecraft to a relatively hazard-free surface. The mission had originally envisioned a touchdown site 164 ft (50 meters) in diameter, but the largest safe areas on Bennu are much smaller. The biggest site is just 52 ft (16 m) wide, or roughly 10% of the safe area envisioned. The team realized that they needed a more precise navigation technique that would allow the spacecraft to accurately target very small sites while dodging potential hazards. In the face of this challenge, the OSIRIS-REx team switched to a new navigation method called Natural Feature Tracking (NFT). NFT provides more extensive navigation capabilities than LIDAR, and is key for executing what the team is calling "Bullseye TAG," which delivers the spacecraft to the much smaller sampling area. As an optical navigation technique, it requires the creation of a high-resolution image catalog onboard the spacecraft. Earlier this year, the spacecraft made reconnaissance passes over the mission's primary and backup sample collection sites, designated Nightingale and Osprey, flying as close as 0.4 miles (625 m) over the surface. During these flyovers, the spacecraft collected images from different angles and lighting conditions to complete the NFT image catalog. The team uses this catalog to identify boulders and craters unique to the sample site region, and will upload this information to the spacecraft before the sample collection event. NFT autonomously guides the spacecraft to Bennu's surface by comparing the onboard image catalog with the real-time navigation images taken during descent. As the spacecraft descends to the surface, NFT updates its predicted point of contact depending on the spacecraft's position in relation to the landmarks. On the ground, team members created "hazard maps" for both the Nightingale and Osprey sites to document all of the surface features that could potentially harm the spacecraft, like large rocks or steep slopes. The team used the image catalog in conjunction with data from the OSIRIS-REx Laser Altimeter (OLA) to create 3D maps that closely model Bennu's topography. As part of NFT, these maps document boulder heights and crater depths, and guide the spacecraft away from potential hazards while targeting a very small site. During descent, if the spacecraft predicts it will touch unsafe terrain, it will autonomously wave-off and back away from the surface. However, if it sees that the area is free of hazards, it will continue to descend and attempt to collect a sample. NFT will be used in April to navigate the spacecraft during its first sample collection rehearsal. The operations team performed preliminary testing during the Orbital B mission phase in late 2019, and the results demonstrated that NFT works in real-life conditions as designed. NFT will also be used for navigation during the second rehearsal planned for June. OSIRIS-REx's first sample collection attempt is scheduled for late August. The spacecraft will depart Bennu in 2021 and is scheduled to deliver the sample to Earth in September 2023.
First official names given to features on asteroid Bennu Greenbelt MD (SPX) Mar 09, 2020 Asteroid Bennu's most prominent boulder, a rock chunk jutting out 71 ft (21.7 m) from the asteroid's southern hemisphere, finally has a name. The boulder - which is so large that it was initially detected from Earth - is officially designated Benben Saxum after the primordial hill that first arose from the dark waters in an ancient Egyptian creation myth. Benben Saxum and 11 other features on the asteroid are the first to receive official Bennu feature names approved by the International Astronomi ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |