. | . |
Beating the curse of dimensionality by Staff Writers Thuwal, Saudi Arabia (SPX) Aug 17, 2021
By scanning past data for both partial and complete matches to current observations, a KAUST-led research team has developed a prediction scheme that can more reliably forecast the future trajectory of environmental parameters. The collection of data at regular intervals over time is common in many fields but particularly so in environmental, transportation and biological research. Such data are used to monitor and record the current state and also to help predict what might come in the future. A typical approach is to look for previous patterns or trajectories in the data that match the current trajectory. However, in practice, there are never any complete matches, and so the predictor needs to find smaller and smaller time windows in past data that provide a partial match. This results in a loss of context and any broader trends that might have given a better prediction, while possibly drawing in random noise. "Predicting future time-series trajectories is challenging in that the trajectories are composed of many sequential observations or 'dimensions,' which limits multivariate prediction approaches," says Hernando Ombao from KAUST. "This is known as the curse of dimensionality." To overcome these challenges, postdoc Shuhao Jiao developed a method called partial functional prediction (PFP) that integrates information from all past complete and partial trajectories. This optimized approach uses all the available data, capturing both long-term trends and well-matched partial trajectories. "By smoothing the trajectories, we can transform the curse into a blessing by capturing the big picture of the dynamic information of trajectories," Jiao says. "Our method incorporates both crosstrajectory and intratrajectory dependence, which previous methods have not achieved." The approach involves a step-wise procedure where the data are first analyzed for longer complete trajectories, the "residual" partial components are then extracted as fragments independent of past trends and anything left over is assigned to random noise. The three functions are then applied to the prediction window. The team, together with collaborator Alexander Aue from the University of California, demonstrated their method on the prediction of fine particulate matter in the air and traffic flow and showed that their PFP method gave far more accurate predictions than existing methods, particularly for longer term forecasts. "Our method shows that by incorporating dependence information within and across trajectories, it is possible to achieve a pronounced improvement in the prediction of future trajectories," Ombao says.
Research Report: "Functional time series prediction under partial observation of the future curve"
Best of both worlds-combining classical and quantum systems to meet supercomputing demands Nagoya City, Japan (SPX) Aug 16, 2021 Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing Quantum entanglement is one of the most fundamental and intriguing phenomena in nature. Recent research on entanglement has proven to be a valuable resource for quantum communication and information processing. Now, scientists from Japan have discovered a stable quantum entangled state of two protons on a silicon surface, opening doors to an organic uni ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |