. 24/7 Space News .
TIME AND SPACE
Atomic parity violation research reaches new milestone
by Staff Writers
Mainz, Germany (SPX) Nov 15, 2018

Experimental set-up of the ytterbium experiment at the Helmholtz Institute Mainz with physicist Dr. Dionysis Antypas.

A reflection always reproduces objects as a complete mirror image, rather than just its individual parts or individual parts in a completely different orientation. It's all or nothing, the mirror can't reflect just a little. This illustrates a fundamental symmetry principle in nature.

For decades, physics assumed that the laws of nature in our world and in the mirror world would be identical, that parity would be preserved. Then in 1956, in the realm of elementary particles, or more precisely in the realm of the weak interaction, researchers discovered a violation of this principle. Parity violation has been a subject of scientific research ever since.

Physicists at Johannes Gutenberg University Mainz (JGU) have recently succeeded in observing parity violation in ytterbium atoms with different numbers of neutrons. The initial effect of the measurements is to confirm the predictions of the Standard Model of particle physics that atoms with different numbers of neutrons would demonstrate parity violation. The research was published in the renowned Nature Physics journal.

Parity violation effect increases with number of neutrons
Parity violation is only known to occur in the weak interaction, one of the four fundamental forces of nature. It was first discovered in beta decay in 1956, in atoms in 1979, and was subsequently studied in various elements.

In 1995 at the University of California in Berkeley, Professor Dmitry Budker started performing precision measurements on the element ytterbium, a rare earth metal. It was this work he brought with him when he came to Mainz University in 2014.

"Our research involves various isotopes of ytterbium. Isotopes are atoms with the same number of protons but different numbers of neutrons in the nucleus," explained Dr. Dionysis Antypas of the Helmholtz Institute Mainz (HIM).

"We selected a chain of four of ytterbium's seven isotopes and confirmed the predictions of the Standard Model: the more neutrons in the nucleus, the greater the parity violation effect," said Antypas, summarizing the results of four years of work in the project.

Comparing the effect in different isotopes was first proposed by Prof. Victor Flambaum in 1986. Flambaum, an Australian physicist from the University of New South Wales, has been a fellow of Mainz University's Gutenberg Research College (GRC) for two years and performs collaborative research with the JGU scientists. The physicists conducted the research using an apparatus at the Helmholtz Institute Mainz: in the presence of an electric and a magnetic field, ytterbium atoms are excited by laser light and the amplitude of the parity violation is measured.

Results pave the way for further investigations into the nucleus of ytterbium
"The latest findings mark a significant milestone in research into atomic parity violation," said Budker, summarizing the data. "They are also a very significant milestone on the road to future research objectives."

The scientists' measurements also offer information on an additional Z boson. Z bosons mediate the weak interaction. Scientists in the field speculate the existence of a further Z boson, referred to as the "Z prime" or "Z" with a much smaller mass than that of the established Z boson.

In the future, Budker and Antypas plan to study ytterbium's nucleus to determine the distribution of its neutrons and study the weak interaction between its nucleons. These projects are in line with the MESA program and projects of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz.

Research paper


Related Links
Johannes Gutenberg Universitaet Mainz
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Half moons and pinch points: Same physics, different energy
Onna, Japan (SPX) Nov 13, 2018
When physicists send neutrons shooting through a frustrated magnet, the particles spray out the other side in signature patterns. The designs appear because, even at low temperatures, atoms in a frustrated metal oscillate in time with each other. One distinctive pattern, known as a "pinch point," resembles a bow-tie and holds wide acclaim in the world of spin liquids. Pinch points are often accompanied by unsung crescent patterns called "half moons," but the physics linking the phenomena has never been ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
First supply trip to space since Soyuz failure poised to launch

Canadian voice of Hal in '2001: A Space Odyssey' dies

Orion recovery team: ready to 'rock and roll'

Cosmonauts to perform spacewalk to examine hole in Soyuz hull on December 11

TIME AND SPACE
Science on the cusp: sounding rockets head north

New horizon for space transportation services

DARPA issues contract proposition for hypersonic missile defense

First Angara A5V Heavy-Class Rocket Launch to Take Place in 2026 - Roscosmos

TIME AND SPACE
Colonizing Mars means contaminating Mars

For arid, Mars-like desert, rain brings death

Atmospheric opacity over Opportunity drops to storm-free levels

NASA wants people on Mars within 25 years

TIME AND SPACE
China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

China's space programs open up to world

China's commercial aerospace companies flourishing

TIME AND SPACE
Extended life for ESA's science missions

ESA's 25 years of telecom: the beginning

ESA's space vision presented at Paris Peace Forum

GomSpace Group resolves on a rights issue of approximately SEK 298 million

TIME AND SPACE
3D Printing, Virtual Reality, Simulated Stardust and More Headed to Orbiting Lab

Cells require background levels of radiation for normal growth

UTA researchers find cheaper, less energy-intensive way to purify ethylene

Optimization of alloy materials: Diffusion processes in nano particles decoded

TIME AND SPACE
A cold Super-Earth just 6 light years away at Barnard's Star

Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers

Laboratory experiments probe the formation of stars and planets

NASA retires Kepler Space Telescope, passes planet-hunting torch

TIME AND SPACE
Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.