. 24/7 Space News .
PHYSICS NEWS
Atom interferometry demonstrated in space for the first time
by Staff Writers
Mainz, Germany (SPX) Apr 14, 2021

An example of an interference pattern produced by the atom interferometer

Extremely precise measurements are possible using atom interferometers that employ the wave character of atoms for this purpose. They can thus be used, for example, to measure the gravitational field of the Earth or to detect gravitational waves. A team of scientists from Germany has now managed to successfully perform atom interferometry in space for the first time - on board a sounding rocket.

"We have established the technological basis for atom interferometry on board of a sounding rocket and demonstrated that such experiments are not only possible on Earth, but also in space," said Professor Patrick Windpassinger of the Institute of Physics at Johannes Gutenberg University Mainz (JGU), whose team was involved in the investigation. The results of their analyses have been published in Nature Communications.

A team of researchers from various universities and research centers led by Leibniz University Hannover launched the MAIUS-1 mission in January 2017. This has since become the first rocket mission on which a Bose-Einstein condensate has been generated in space. This special state of matter occurs when atoms - in this case atoms of rubidium - are cooled to a temperature close to absolute zero, or minus 273 degrees Celsius.

"For us, this ultracold ensemble represented a very promising starting point for atom interferometry," explained Windpassinger. Temperature is one of the determining factors, because measurements can be carried out more accurately and for longer periods at lower temperatures.

Atom interferometry: Generating atomic interference by spatial separation and subsequent superposition of atoms
During the experiments, the gas of rubidium atoms was separated using laser light irradiation and then subsequently superpositioned. Depending on the forces acting on the atoms on their different paths, several interference patterns can be produced, which in turn can be used to measure the forces that are influencing them, such as gravity.

Laying the groundwork for precision measurements
The study first demonstrated the coherence, or interference capability, of the Bose-Einstein condensate as a fundamentally required property of the atomic ensemble. To this end, the atoms in the interferometer were only partially superimposed by means of varying the light sequence, which, in the case of coherence, led to the generation of a spatial intensity modulation.

The research team has thus demonstrated the viability of the concept, which may lead to further experiments targeting the measurement of the Earth's gravitational field, the detection of gravitational waves, and a test of Einstein's equivalence principle.

Even more measurements will be possible when MAIUS-2 and MAIUS-3 are launched
In the near future, the team wants to go further and investigate the feasibility of high-precision atom interferometry to test Einstein's principle of equivalence.

Two more rocket launches, MAIUS-2 and MAIUS-3, are planned for 2022 and 2023, and on these missions the team also intends to use potassium atoms, in addition to rubidium atoms, to produce interference patterns. By comparing the free fall acceleration of the two types of atoms, a test of the equivalence principle with previously unattainable precision can be facilitated.

"Undertaking this kind of experiment would be a future objective on satellites or the International Space Station ISS, possibly within BECCAL, the Bose Einstein Condensate and Cold Atom Laboratory, which is currently in the planning phase.

In this case, the achievable accuracy would not be constrained by the limited free-fall time aboard a rocket," explained Dr. Andre Wenzlawski, a member of Windpassinger's research group at JGU, who is directly involved in the launch missions.

The experiment is one example of the highly active research field of quantum technologies, which also includes developments in the fields of quantum communication, quantum sensors, and quantum computing.

The MAIUS-1 sounding rocket mission was implemented as a joint project involving Leibniz University Hannover, the University of Bremen, Johannes Gutenberg University Mainz, Universitat Hamburg, Humboldt-Universitat zu Berlin, the Ferdinand-Braun-Institut in Berlin, and the German Aerospace Center (DLR).

Financing for the project was arranged by the Space Administration of the German Aerospace Center and funds were provided by the German Federal Ministry for Economic Affairs and Energy on the basis of a resolution of the German Bundestag.

Research Report: "Experimental Quantum Optics and Quantum Information Research Group"


Related Links
Johannes Gutenberg Universitaet Mainz
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
New light on baryonic matter and gravity on cosmic scales
La Laguna, Spain (SPX) Mar 26, 2021
Scientists estimate that dark matter and dark energy together are some 95% of the gravitational material in the universe while the remaining 5% is baryonic matter, which is the "normal" matter composing stars, planets, and living beings. However for decades almost one half of this matter has not been found either. Now, using a new technique, a team in which the Instituto de Astrofisica de Canarias (IAC) has participated, has shown that this "missing" baryonic matter is found filling the space betw ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Biden proposes 6.3% boost for NASA in budget proposal

Liftoff! Pioneers of space

Astronauts need a fridge

All aboard! Next stop space...

PHYSICS NEWS
DLR is creating the rocket fuels of the future

Phantom Space raises $5M in seed funding to for space transportation concept

Blue Origin launches what may be final test flight before carrying people

Blue Origin rocket test will monitor capsule access by humans

PHYSICS NEWS
Work progresses toward Ingenuity's First Flight on Mars

NASA delays Mars helicopter flight again for software update

CO2 mitigation on Earth and magnesium civilization on Mars

NASA delays Mars copter flight for tech check

PHYSICS NEWS
Chinese rocket for space station mission arrives at launch site

Ningbo to build $3.05b rocket launchpad site

China advances space cooperation in 2020: blue book

China selects astronauts for space station program

PHYSICS NEWS
India's telecom regulator assessing Starlink system before accepting beta

UK space firm In-Space Missions Limited Announces Major Expansion And Job Creation Plans

China to develop aerospace as strategic emerging industry

US space employment, investments resist pandemic in 2020, continue to climb in 2021

PHYSICS NEWS
Sotheby's sees $16.8 million in first NFT sale

Google unveils $2bn data hub in Poland

Northrop Grumman and Intelsat make history with docking of 2nd Mission Extension Vehicle

New laser to help clear the sky of space debris

PHYSICS NEWS
Study warns of 'oxygen false positives' in search for signs of life on other planets

Crustal mineralogy drives microbe diversity beneath Earth's surface

Amounts of organic molecules in planetary systems differ from early on

Long-awaited review reveals journey of water from interstellar clouds to habitable worlds

PHYSICS NEWS
New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

SwRI scientists discover a new auroral feature on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.