. | . |
Astrosat First Light: CZT Imager Looks at Crab Nebula by Staff Writers New Delhi, India (SPX) Oct 14, 2015
Astrosat, India's first Multi-wavelength Space Observatory was successfully launched by ISRO's workhorse launch vehicle PSLV into a 650km orbit on September 28, 2015. Then began the process of putting each of the payloads into operation.The Charged Particle Monitor (CPM) was the first payload to go operational followed by the Cadmium Zinc Telluride Imager (CZTI), the hard X-ray detector on board Astrosat. CZTI was made fully operational on October 5, 2015. Then,on October 6, Astrosat was oriented towards Crab Nebula, remnant of the Supernova detected by Chinese astronomers in the year 1054. The Crab Nebula, which also includes the Crab Pulsar, is the brightest hard X-ray source in the sky, and is very often used to calibrate hard X-ray detectors.
CZTI Detectors The top of the CZTI is covered by a Coded Aperture Mask - a Tantalum plate with carefully placed holes - which casts a shadow on the detector when illuminated by a source. Imaging is performed by interpreting the pattern of the recorded shadow. The mask blocks nearly half the incident X-rays, so the effective area of the CZTI is about 490 cm2. The expected background rate is about 250 counts per second per quadrant; however, the observed counts exceeded it by a factor of four. This was understood to be due to multiple events recorded during Cosmic Ray interaction. A movie made out of images taken every 100 micro-second shows the fascinating kaleidoscopic picture of high energy interactions in space: looked at the fast rate of 100 micro-seconds, there won't be any events 98% of the time (these blank images are skipped while making the movie), some are single events representing genuine X-rays, some are double events in neighbouring pixels due to Compton scattering and many are multiple particle induced events. This is the first time ever that a hard X-ray instrument acting as a particle tracker is sent to space. Quick analysis software, based on the idea that genuine X-ray events would be isolated single events, was made operational to prune the data and detect the actual X-rays coming from Crab Nebula.
A First look at Crab Nebula A quick look at the first orbit image showed that Crab Nebula was not detected. Well, Crab is the brightest hard X-ray source, visible even to a small hard X-ray detector. Most likely, the data pruning was erroneous. The total X-ray counts as a function of time was looked into: they should be stable at the Astrosat orbit and must show a decrease whenever Crab goes behind the Earth, i.e. when the so called Earth occultation occurs. Count rates were steady, but there was no sign of decrease or increase in count rates throughout the orbit. A tense session of self introspection followed. Questions followed one after the other to explain the strange behaviour. Did the characteristics of the X-ray detectors change after launch ? However, the data contradicted the possibility. The multiple tracks show that they are genuine events and a careful look at the spectrum showed the characteristic X-ray lines emitted by the protective Tantalum cover at exactly the expected energy. Did the Mission Operation team make any error in orienting the satellite ? Well, CZT-Imager has a wide field of view and it is too embarrassing to even pose the question whether they made such a large mistake in pointing. Being Science, and not magic, an explanation would be there for this behaviour and the only way to reach at it was by systematically analysing the data at hand.
Crab Nebula was Captured During the first orbit, there was a difficulty in detecting this Crab Nebula as the satellite happened to pass through the South Atlantic Anomaly (SAA) region when Crab was in the field of view. SAA avoidance zone was deliberately kept wide to protect the instruments, and detectors were switched OFF in this interval during the initial days of Astrosat operation. When all the data were systematically analysed and data were selected based on the availability of Crab in the detector field of view, one could see the Crab emerging from Earth's shadow. The image generated by deconvolving the coded mask shadows accumulated during this interval clearly shows Crab as a bright object near the centre. Further Work In the first week of CZTI operation, Crab Nebula was stared at continuously and was also viewed at different angles to firm up the imaging ability of the instrument. The Crab Nebula was also made to bombard the instrument at several large off-axis angles so that CZTI characteristics as a hard X-ray wide angle monitor can be quantified. The black hole source Cygnus X-1 was also observed for two days. In the initial operation, the low energy threshold of CZTI was kept at 20 keV (to be brought down carefully to the design goal of 10 keV in due course) and to provide simultaneous low energy data, the Swift satellite of NASA made the following observations: Crab: Oct 6 21:51:00 to 22:12:00 UT Cyg X-1: Oct 7 14:55:00 to 15:15:00 UT One of the fascinating science objectives is to understand the accretion disk geometry in a black hole sources like Cygnus X-1. The NuSTAR satellite of NASA is operating for the last 3 years and it has the best spectroscopic sensitivity in the 10 - 80 keV region. A simultaneous observation has been made with NuSTAR (Oct 7 15:40:08 UT to Oct 8 02:25:00 UT) to observe the time dependent spectral characteristics: it will help us in understanding the instrument systematics in the 10 - 80 keV region; CZTI will provide best spectroscopic data in 70 keV - 300 keV region (by utilising Compton scattered double events) and a joint analysis with NuSTAR will provide unprecedented wide band spectroscopic data on this source. CZTI has polarisation sensitivity in the 100 - 300 keV region and the best hard X-ray polarisation measurement of Crab till date has been provided by the Integral satellite of ESA. Integral is observing Crab simultaneously with CZTI and hopefully, we will have a refined polarisation measurement of Crab, as a function of its rotation period.
What Next?
Related Links ISRO Space Telescope News and Technology at Skynightly.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |