. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers observe unprecedented detail in pulsar 6,500 light-years from Earth
by Staff Writers
Toronto, Canada (SPX) May 29, 2018

The pulsar PSR B1957+20 is seen in the background through the cloud of gas enveloping its brown dwarf star companion. (illustration only)

A team of astronomers has performed one of the highest resolution observations in astronomical history by observing two intense regions of radiation, 20 kilometres apart, around a star 6500 light-years away.

The observation is equivalent to using a telescope on Earth to see a flea on the surface of Pluto.

The extraordinary observation was made possible by the rare geometry and characteristics of a pair of stars orbiting each other. One is a cool, lightweight star called a brown dwarf, which features a "wake" or comet-like tail of gas. The other is an exotic, rapidly spinning star called a pulsar.

"The gas is acting as like a magnifying glass right in front of the pulsar," says Robert Main, lead author of the paper describing the observation being published May 24 in the journal Nature. "We are essentially looking at the pulsar through a naturally occurring magnifier which periodically allows us to see the two regions separately."

Main is a PhD astronomy student in the Department of Astronomy and Astrophysics at the University of Toronto, working with colleagues at the University of Toronto's Dunlap Institute for Astronomy and Astrophysics and Canadian Institute for Theoretical Astrophysics, and the Perimeter Institute.

The pulsar is a neutron star that rotates rapidly - over 600 times a second. As the pulsar spins, it emits beams of radiation from the two hotspots on its surface. The intense regions of radiation being observed are associated with the beams.

The brown dwarf star is about a third the diameter of the Sun. It is roughly two million kilometres from the pulsar - or five times the distance between the Earth and the moon - and orbits around it in just over 9 hours. The dwarf companion star is tidally locked to the pulsar so that one side always faces its pulsating companion, the way the moon is tidally locked to the Earth.

Because it is so close to the pulsar, the brown dwarf star is blasted by the strong radiation coming from its smaller companion. The intense radiation from the pulsar heats one side of the relatively cool dwarf star to the temperature of our Sun, or some 6000 C.

The blast from the pulsar could ultimately spell its companion's demise. Pulsars in these types of binary systems are called "black widow" pulsars. Just as a black widow spider eats its mate, it is thought that the pulsar, given the right conditions, could gradually erode gas from the dwarf star until the latter is consumed.

In addition to being an observation of incredibly high resolution, the result could be a clue to the nature of mysterious phenomena known as Fast Radio Bursts, or FRBs.

"Many observed properties of FRBs could be explained if they are being amplified by plasma lenses," say Main. "The properties of the amplified pulses we detected in our study show a remarkable similarity to the bursts from the repeating FRB, suggesting that the repeating FRB may be lensed by plasma in its host galaxy."


Related Links
Dunlap Institute for Astronomy and Astrophysics
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A new map for a birthplace of stars
New Haven CT (SPX) May 21, 2018
A Yale-led research group has created the most detailed maps yet of a vast seedbed of stars similar to Earth's Sun. The maps provide unprecedented detail of the structure of the Orion A molecular cloud, the closest star-forming region of high-mass stars. Orion A hosts a variety of star-forming environments, including dense star clusters similar to the one where Earth's Sun is believed to have formed. "Our maps probe a wide range of physical scales needed to study how stars form in molecular ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Administrator Statement on Space Policy Directive-2

Putin, Abe speak to ISS astronauts from Kremlin

NASA awards $43M to US Small Businesses for Tech Research

Robotics Controllers Install Cygnus Resupply Ship on Station

STELLAR CHEMISTRY
Two sportscar-sized satellites in orbit to measure Earth's water

Aerojet Rocketdyne Thrusters Help Deliver Cygnus to International Space Station

Russia May Renew 'Satan' Missile Launches to Place Satellites In Orbit

Aerojet Rocketdyne demonstrates low-cost, high thrust space engine

STELLAR CHEMISTRY
Scientists Shrink Chemistry Lab to Seek Evidence of Life on Mars

Opportunity Collects Panoramas for Site Awareness and Future Drive Planning

Curiosity Mars rover back on drill duty

Why we won't get to Mars without teamwork

STELLAR CHEMISTRY
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

STELLAR CHEMISTRY
From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

STELLAR CHEMISTRY
New material detects the amount of UV radiation and helps monitor radiation dose

Advanced materials: processing glass like a polymer

Phase Four Signs Contract with NASA to Vet its Propulsion System for Upcoming Small Satellite Missions

Focus on space debris

STELLAR CHEMISTRY
Take a Virtual Trip to a Strange New World with NASA

Linguists gather in L.A. to ponder the Language of ET

Mars rocks may harbor signs of life from 4 billion years ago

A simple mechanism could have been decisive for the development of life

STELLAR CHEMISTRY
OSL Optics to help unlock the secrets of Jupiter's Icy Moons

SwRI scientists introduce cosmochemical model for Pluto formation

Jupiter: A New Perspective

Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.