. 24/7 Space News .
TIME AND SPACE
Astronomers identify some of the oldest galaxies in the universe
by Staff Writers
Durham UK (SPX) Aug 20, 2018

'The distribution of satellite galaxies orbiting a computer-simulated galaxy, as predicted by the Lambda-cold-dark-matter cosmological model. The blue circles surround the brighter satellites, the white circles the ultrafaint satellites (so faint that they are not readily visible in the image). The ultrafaint satellites are amongst the most ancient galaxies in the Universe; they began to form when the Universe was only about 100 million years old (compared to its current age of 13.8 billion years). The image has been generated from simulations from the Auriga project carried out by researchers at the Institute for Computational Cosmology, Durham University, UK, the Heidelberg Institute for Theoretical Studies, Germany, and the Max Planck Institute for Astrophysics, Germany.'

Astronomers have identified some of the earliest galaxies in the Universe. The team from the Institute for Computational Cosmology at Durham University and the Harvard-Smithsonian Center for Astrophysics, has found evidence that the faintest satellite galaxies orbiting our own Milky Way galaxy are amongst the very first galaxies that formed in our Universe.

Scientists working on this research have described the finding as "hugely exciting" explaining that that finding some of the Universe's earliest galaxies orbiting the Milky Way is "equivalent to finding the remains of the first humans that inhabited the Earth."

The research group's findings suggest that galaxies including Segue-1, Bootes I, Tucana II and Ursa Major I are in fact some of the first galaxies ever formed, thought to be over 13 billion years old.

When the Universe was about 380,000 years old, the very first atoms formed. These were hydrogen atoms, the simplest element in the periodic table. These atoms collected into clouds and began to cool gradually and settle into the small clumps or "halos" of dark matter that emerged from the Big Bang.

This cooling phase, known as the "Cosmic dark ages", lasted about 100 million years. Eventually, the gas that had cooled inside the halos became unstable and began to form stars - these objects are the very first galaxies ever to have formed.

With the formation of the first galaxies, the Universe burst into light, bringing the cosmic dark ages to an end.

Dr Sownak Bose, at Harvard-Smithsonian Center for Astrophysics, working with Dr Alis Deason and Professor Carlos Frenk at Durham University's ICC, identified two populations of satellite galaxies orbiting the Milky Way.

The first was a very faint population consisting of the galaxies that formed during the "cosmic dark ages". The second was a slightly brighter population consisting of galaxies that formed hundreds of millions of years later, once the hydrogen that had been ionized by the intense ultraviolet radiation emitted by the first stars was able to cool into more massive dark matter halos.

Remarkably, the team found that a model of galaxy formation that they had developed previously agreed perfectly with the data, allowing them to infer the formation times of the satellite galaxies.

Their findings are published in the Astrophysical Journal.

Professor Carlos Frenk, Director of Durham University's Institute for Computational Cosmology, said: "Finding some of the very first galaxies that formed in our Universe orbiting in the Milky Way's own backyard is the astronomical equivalent of finding the remains of the first humans that inhabited the Earth. It is hugely exciting.

"Our finding supports the current model for the evolution of our Universe, the 'Lambda-cold-dark-matter model' in which the elementary particles that make up the dark matter drive cosmic evolution."

The intense ultraviolet radiation emitted by the first galaxies destroyed the remaining hydrogen atoms by ionizing them (knocking out their electrons), making it difficult for this gas to cool and form new stars.

The process of galaxy formation ground to a halt and no new galaxies were able to form for the next billion years or so.

Eventually, the halos of dark matter became so massive that even ionized gas was able to cool. Galaxy formation resumed, culminating in the formation of spectacular bright galaxies like our own Milky Way.

Dr Sownak Bose, who was a PhD student at the ICC when this work began and is now a research fellow at the Harvard-Smithsonian Center for Astrophysics, said: "A nice aspect of this work is that it highlights the complementarity between the predictions of a theoretical model and real data.

"A decade ago, the faintest galaxies in the vicinity of the Milky Way would have gone under the radar. With the increasing sensitivity of present and future galaxy censuses, a whole new trove of the tiniest galaxies has come into the light, allowing us to test theoretical models in new regimes."

Dr Alis Deason, who is a Royal Society University Research Fellow at the ICC, Durham University, said: "This is a wonderful example of how observations of the tiniest dwarf galaxies residing in our own Milky Way can be used to learn about the early Universe."

Research paper


Related Links
Durham University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Early opaque universe linked to galaxy scarcity
Riverside CA (SPX) Aug 16, 2018
A team of astronomers led by George Becker at the University of California, Riverside, has made a surprising discovery: 12.5 billion years ago, the most opaque place in the universe contained relatively little matter. It has long been known that the universe is filled with a web-like network of dark matter and gas. This "cosmic web" accounts for most of the matter in the universe, whereas galaxies like our own Milky Way make up only a small fraction. Today, the gas between galaxies is almost total ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Administrator Views SLS Progress During First Visit to Marshall

Goonhilly and Spacebit parpace to accelerate commercial space exploration through blockchain technology

NASA Administrator Plans to Meet With Russian Space Agency Chief in Near Future

India to send manned mission to space by 2022: Modi

TIME AND SPACE
Aerojet Rocketdyne Expands Solid Rocket Motor Center of Excellence at Arkansas Facility

Stennis Begins 5th Series of RS-25 Engine Tests

Student Experiments Soar with Early Morning Launch from Wallops

NASA Administrator Views Progress Building SLS and Orion Hardware

TIME AND SPACE
Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

Aerojet Rocketdyne delivers power generator for Mars 2020 Rover

TIME AND SPACE
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

TIME AND SPACE
ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

New Image Gallery For The Planetary Science Archive

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

NASA invests in concepts for a vibrant future commercial space economy

TIME AND SPACE
Wearable 'microbrewery' saves human body from radiation damage

Scientists develop way to supercool liquids without freezing them

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again

PhD student develops spinning heat shield for future spacecraft

TIME AND SPACE
Scientists discovered organic acid in a protoplanetary disk

Impact of a stellar intruder on our solar system

Iron and titanium in the atmosphere of exoplanet orbiting KELT-9

Ultrahot planets have starlike atmospheres

TIME AND SPACE
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.