. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers find 72 bright and fast explosions
by Staff Writers
Liverpool, UK (SPX) Apr 03, 2018

Images of one of the transient events, from eight days before the maximum brightness to 18 days afterwards. This outburst took place at a distance of 4 billion light years.

Gone in a (cosmological) flash: a team of astronomers found 72 very bright, but quick events in a recent survey and are still struggling to explain their origin. Miika Pursiainen of the University of Southampton will present the new results on Tuesday 3 April at the European Week of Astronomy and Space Science.

The scientists found the transients in data from the Dark Energy Survey Supernova Programme (DES-SN). This is part of a global effort to understand dark energy, a component driving an acceleration in the expansion of the Universe.

DES-SN uses a large camera on a 4-metre telescope in the Cerro Tololo Inter-American Observatory (CTIO) in the Chilean Andes. The survey looks for supernovae, the explosion of massive stars at the end of their lives. A supernova explosion can briefly be as bright as a whole galaxy, made up of hundreds of billions of stars.

Pursiainen and his collaborators found the largest number of these quick events to date. Even for transient phenomena, they are very peculiar: while they have a similar maximum brightness to different types of supernovae they are visible for less time, from a week to a month. In contrast supernovae last for several months or more.

The events appear to be both hot, with temperatures from 10,000 to 30,000 degrees Celsius, and large ranging in size from several up to a hundred times the distance from Earth to Sun (the Earth is 150 million kilometres from the Sun). They also seem to be expanding and cooling as they evolve in time, as would be expected from an exploding event such as a supernova.

There is still debate on the origin of these transients. One possible scenario is that the star sheds a lot of material before a supernova explosion, and in extreme cases could be completely enveloped by a shroud of matter.

The supernova itself may then heat the surrounding material to very high temperatures. In this case astronomers see the hot cloud rather than the exploding star itself. To confirm any of this, the team will need a lot more data.

Pursiainen comments: "The DES-SN survey is there to help us understand dark energy, itself entirely unexplained. That survey then also reveals many more unexplained transients than seen before. If nothing else, our work confirms that astrophysics and cosmology are still sciences with a lot of unanswered questions!"

For the future, the team plan to continue their search for transients, and estimate how often they take place compared with more 'routine' supernovae.


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A Runaway Star in the Small Magellanic Cloud
Flagstaff AZ (SPX) Mar 30, 2018
Astronomers have discovered a rare "runaway" star that is speeding across its galaxy at 300,000 miles per hour (at that speed it would take about half a minute to travel from Los Angeles to New York). The runaway star (designated J01020100-7122208) is located in the Small Magellanic Cloud, a close neighbor of the Milky Way Galaxy, and is believed to have once been a member of a binary star system. When the companion star exploded as a supernova, the tremendous release of energy flung J010201 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA accepting applications for mission control leaders

Out of this world: Inside Japan's space colony centre

Aerospace Tech Startups Get a Chance to Pitch at JPL

US astronauts make spacewalk to perform ISS repairs

STELLAR CHEMISTRY
University student projects launch from NASA Wallops

SpaceX launches cargo to space station using recycled rocket, spaceship

New research payloads heading to ISS on SpaceX Resupply Mission

Funds shortage pulls the brakes on India's crucial space programs

STELLAR CHEMISTRY
Opportunity making extensive study of rock target Aguas Calientes

Curiosity rover gets ready for its next adventure

First test success for largest Mars mission parachute

Opportunity Completes In-Situ Work on 'Aguas Calientes'

STELLAR CHEMISTRY
Earth-bound Chinese spacelab plunging to fiery end

China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

STELLAR CHEMISTRY
Relativity Space raises 35M in Series B funding

Storm hunter launched to International Space Station

SSL to build direct broadcasting satellite for B-SAT

SpaceX says Iridium satellite payload deployed

STELLAR CHEMISTRY
The Problem With Space Junk is We Don't Know Where Most Objects Are

Finding order in disorder demonstrates a new state of matter

Mars mission: how increasing levels of space radiation may halt human visitors

Point Nemo, Earth's watery graveyard for spacecraft

STELLAR CHEMISTRY
NASA prepares to launch next ExoPlanet mission

Is there life adrift in the clouds of Venus?

Characterization of a water world in a multi-exoplanetary system

Hot, metallic Mercury-like exoplanet discovered 340 light-years from Earth

STELLAR CHEMISTRY
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.