. 24/7 Space News .
IRON AND ICE
Asteroid that formed Vredefort crater bigger than previously believed
by Staff Writers
Rochester NY (SPX) Sep 27, 2022

An impactor--most likely an asteroid--hurtled toward Earth about two billion years ago, crashing into the planet near present-day Johannesburg, South Africa. The impactor formed Vredefort crater, what is today the biggest crater on our planet. Using updated simulation data, University of Rochester researchers discovered the impactor that formed Vredefort crater was much larger than previously believed.

About two billion years ago, an impactor hurtled toward Earth, crashing into the planet in an area near present-day Johannesburg, South Africa. The impactor-most likely an asteroid-formed what is today the biggest crater on our planet.

Scientists have widely accepted, based on previous research, that the impact structure, known as the Vredefort crater, was formed by an object about 15 kilometers (approximately 9.3 miles) in diameter that was travelling at a velocity of 15 kilometers per second.

But according to new research from the University of Rochester, the impactor may have been much bigger-and would have had devastating consequences across the planet. This research, published in the Journal of Geophysical Research, provides a more accurate understanding of the large impact and will allow researchers to better simulate impact events on Earth and other planets, both in the past and the future.

"Understanding the largest impact structure that we have on Earth is critical," says Natalie Allen '20, now a PhD student at John Hopkins University. Allen is the first author of the paper, based on research she conducted as an undergraduate at Rochester with Miki Nakajima, an assistant professor of Earth and environmental sciences.

"Having access to the information provided by a structure like the Vredefort crater is a great opportunity to test our model and our understanding of the geologic evidence so we can better understand impacts on Earth and beyond."

Updated simulations suggest 'devastating' consequences
Over the course of two billion years, the Vredefort crater has eroded. This makes it difficult for scientists to directly estimate the size of the crater at the time of the original impact, and therefore the size and velocity of the impactor that formed the crater.

An object that is 15 kilometers in size and traveling at a velocity of 15 kilometers per second would produce a crater about 172 kilometers in diameter. However, this is much smaller than current estimates for the Vredefort crater.

These current estimates are based on new geological evidence and measurements estimating that the structure's original diameter would have been between 250 and 280 kilometers (approximately 155 and 174 miles) during the time of the impact.

Allen, Nakajima, and their colleagues conducted simulations to match the updated size of the crater. Their results showed that an impactor would have to be much larger-about 20 to 25 kilometers-and traveling at a velocity of 15 to 20 kilometers per second to explain a crater 250 kilometers in size.

This means the impactor that formed the Vredefort crater would have been larger than the asteroid that killed off the dinosaurs 66 million years ago, forming the Chicxulub crater. That impact had damaging effects globally, including greenhouse heating, widespread forest fires, acid rain, and destruction of the ozone layer, in addition to causing the Cretaceous-Paleogene extinction event that killed the dinosaurs.

If the Vredefort crater was even larger and the impact more energetic than that which formed the Chicxulub crater, the Vredefort impact may have caused even more catastrophic global consequences.

"Unlike the Chicxulub impact, the Vredefort impact did not leave a record of mass extinction or forest fires given that there were only single-cell lifeforms and no trees existed two billion years ago," Nakajima says. "However, the impact would have affected the global climate potentially more extensively than the Chicxulub impact did."

Dust and aerosols from the Vredefort impact would have spread across the planet and blocked sunlight, cooling the Earth's surface, she says. "This could have had a devastating effect on photosynthetic organisms. After the dust and aerosols settled-which could have taken anywhere from hours to a decade-greenhouse gases such as cardon dioxide that were emitted from the impact would have raised the global temperature potentially by several degrees for a long period of time."

A multi-faceted model of Vredefort crater
The simulations also allowed the researchers to study the material ejected by the impact and the distance the material traveled from the crater. They can use this information to determine the geographic locations of land masses billions of years ago.

For instance, previous research determined material from the impactor was ejected to present-day Karelia, Russia. Using their model, Allen, Nakajima, and their colleagues found that, two billion years ago, the distance of the land mass containing Karelia would have been only 2,000 to 2,500 kilometers from the crater in South Africa-much closer than the two areas are today.

"It is incredibly difficult to constrain the location of landmasses long ago," Allen says. "The current best simulations have mapped back about a billion years, and uncertainties grow larger the further back you go. Clarifying evidence such as this ejecta layer mapping may allow researchers to test their models and help complete the view into the past."

Undergraduate research leads to publication
The idea for this paper arose as part of a final for the course Planetary Interiors (now named Physics of Planetary Interiors), taught by Nakajima, which Allen took as a junior.

Allen says the experience of having undergraduate work result in a peer-reviewed journal article was very rewarding and helped her when applying for graduate school.

"When Professor Nakajima approached me and asked if I wanted to work together to turn it into a publishable work, it was really gratifying and validating," Allen says. "I had formulated my own research idea, and it was seen as compelling enough to another scientist that they thought it was worth publishing!"

She adds, "This project was way outside of my usual research comfort zone, but I thought it would be a great learning experience and would force me to apply my skills in a new way. It gave me a lot of confidence in my research abilities as I prepared to go to graduate school."

Research Report:A Revision of the Formation Conditions of the Vredefort Crater


Related Links
University of Rochester
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
'A new era': NASA strikes asteroid in key test of planetary defense
Laurel, United States (AFP) Sept 27, 2022
Bullseye: A NASA spaceship on Monday struck an asteroid seven million miles away in order to deflect its orbit, succeeding in a historic test of humanity's ability to prevent a celestial object from devastating life on Earth. The Double Asteroid Redirection Test (DART) impactor hit its target, the space rock Dimorphos, at 7:14 pm Eastern Time (2314 GMT), 10 months after blasting off from California on its pioneering mission. "We're embarking on a new era, an era in which we potentially have the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA postpones Crew-5 mission over Hurricane Ian

Amid Ukraine war, US flies Russian cosmonaut to ISS

Three Russian cosmonauts return from space station

NASA awards commercial Small Satellite Data Acquisition Agreement

IRON AND ICE
Rocket Lab to launch environmental monitoring satellite for General Atomics

SpinLaunch completes Flight Test 10

Elon Musk may help NASA extend life for Hubble

Virgin Orbit's next rocket ready for Cornwall

IRON AND ICE
A broken rock won't break our Team

Insights into Utopia Basin revealed by Mars rover Zhurong

Sols 3614-3615: Chemin's Moment To Shine

India loses contact with budget Mars orbiter after eight years

IRON AND ICE
Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

Space missions bring Down-to-Earth benefits

IRON AND ICE
Satellogic signs 3 year deal with Albania to access dedicated satellite constellation

AE Industrial Partners makes significant investment in York Space Systems

John Deere announces Request for Proposals for satellite communications opportunity

ViaSat-3 achieves flight configuration

IRON AND ICE
Solstar provides assured communications for deorbiting LEO satellites as FCC issues new order

Studying yeast DNA in space may help protect astronauts from cosmic radiation

Kayhan Space Awarded SpaceWERX Orbital Prime Contract

Some everyday materials have memories, and now they can be erased

IRON AND ICE
A day at the beach for life on other worlds

Laughing gas in space could mean life

Synthetic lava in the lab aids exoplanet exploration

The fountain of life: Water droplets hold the secret ingredient for building life

IRON AND ICE
NASA's Juno gets highest-resolution close-up of Jupiter's moon Europa

Juno probe takes detailed photo of Jupiter's moon, Europa

Juno will perform close flyby of Jupiter's icy moon Europa

Planetary-scale 'heat wave' discovered in Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.