. | . |
Asteroid ripped apart to form star's glowing ring system by Staff Writers Warwick, UK (SPX) Nov 15, 2015
The sight of an asteroid being ripped apart by a dead star and forming a glowing debris ring has been captured in an image for the first time. Comprised of dust particles and debris, the rings are formed by the star's gravity tearing apart asteroids that came too close. Gas produced by collisions among the debris within the ring is illuminated by ultraviolet rays from the star, causing it to emit a dark red glow which the researchers observed and turned into the image of the ring. Led by Christopher Manser of the University of Warwick's Astrophysics Group, the researchers investigated the remnants of planetary systems around white dwarf stars; in this instance, SDSS1228+1040. Whilst similar to the formation of Saturn's rings, the scale of the white dwarf and its debris is many times greater in size. Christopher Manser explains: "The diameter of the gap inside of the debris ring is 700,000 kilometres, approximately half the size of the Sun and the same space could fit both Saturn and its rings, which are only around 270,000 km across. At the same time, the white dwarf is seven times smaller than Saturn but weighs 2500 times more". While debris rings have been found at a handful of other white dwarfs, the imaging of SDSS1228+1040 gives an unprecedented insight into the structure of these systems. "We knew about these debris disks around white dwarfs for over twenty years, but have only now been able to obtain the first image of one of these disks", says Mr Manser. To acquire the image the researchers used Doppler tomography, which is very similar to Computed Tomography (CT) routinely used in hospitals. Both methods take scans from many different angles which are then combined in a computer into an image. While in CT, the machine moves around the patient, the disk the researchers observed is rotating very slowly by itself meaning they had to take data over twelve years. Discussing what the researchers saw in the image Mr Manser says: "The image we get from the processed data shows us that these systems are truly disc-like, and reveal many structures that we cannot detect in a single snapshot. The image shows a spiral-like structure which we think is related to collisions between dust grains in the debris disc." Systems such as SDSS1228+1040, the researchers argue, are a glimpse at the future of our own solar system once the Sun runs out of fuel. By observing these systems, we can answer questions such as: Are other planetary systems like our own? What will be the fate of our own solar system? Addressing these issues Professor Boris Gansicke of the University of Warwick's Astrophysics Group says: "When we discovered this debris disk orbiting the white dwarf SDSS1228+1040 back in 2006, we thought we saw some signs of an asymmetric shape. However, we could not have imagined the exquisite details that are now visible in this image constructed from twelve years of data - it was definitely worth the wait." "Over the past decade, we have learned that remnants of planetary systems around white dwarfs are ubiquitous, and over thirty debris disks have been found by now. While most of them are in a stable state, just like Saturn's rings, a handful are seen to change, and it is those systems that can tell us something about how these rings are formed." The research, Doppler-imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9, is published by the Monthly Notices of the Royal Astronomical Society.
Related Links University of Warwick Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |