. 24/7 Space News .
IRON AND ICE
Asteroid Ryugu shaken by Hayabusa2's impactor
by Staff Writers
Kobe, Japan (SPX) Oct 30, 2020

a wild ride.

Professor ARAKAWA Masahiko (Graduate School of Science, Kobe University, Japan) and members of the Hayabusa2 mission discovered more than 200 boulders ranging from 30cm to 6m in size, which either newly appeared or moved as a result of the artificial impact crater created by Japanese spacecraft Hayabusa2's Small Carry-on Impactor (SCI) on April 5th, 2019. Some boulders were disturbed even in areas as far as 40m from the crater center.

The researchers also discovered that the seismic shaking area, in which the surface boulders were shaken and moved an order of cm by the impact, extended about 30m from the crater center. Hayabusa2 recovered a surface sample at the north point of the SCI crater (TD2), and the thickness of ejecta deposits at this site were estimated to be between 1.0mm to 1.8cm using a Digital Elevation Map (DEM). T

hese findings on a real asteroid's resurfacing processes can be used as a benchmark for numerical simulations of small body impacts, in addition to artificial impacts in future planetary missions such as NASA's Double Asteroid Redirection Test (DART).The results will be presented at the 52nd meeting of the AAS Division of Planetary Science on October 30th in the session entitled Asteroids: Bennu and Ryugu 2.

The aim of impacting Ryugu with a ~13cm SCI projectile was to recover a sample of the subsurface material. In addition, this provided a good opportunity to study the surface renewal processes (resurfacing) that result from an impact occurring on an asteroid with a surface gravity of 10-5 of the Earth's gravity. The SCI succeeded in forming an impact crater, which was defined as a SCI crater with a diameter of 14.5m (Arakawa et al., 2020), and the surface sample was recovered at TD2 (10.04N, 300.60E). It was discovered that the crater center's concentric area, which has a radius four times larger than the crater radius, was also disturbed by the SCI impact, causing boulder movement.

The researchers subsequently compared surface images before and after the artificial impact in order to study the resurfacing processes associated with cratering, such as seismic shaking and ejecta deposition. To do this, they constructed SCI crater rim profiles using a Digital Elevation Map (DEM) consisting of the pre-impact DEM subtracted from the post-impact DEM. The average rim profile was approximated by the empirical equation of h=hrexp[-(r/Rrim-1)/^rim] and the fitted parameters of hr and lrim were 0.475m and 0.245m, respectively.

Based on this profile, the SCI crater's ejecta blanket thickness was calculated and found to be thinner than that of the conventional result for natural craters, as well as that calculated from the crater formation theory. However, this discrepancy was solved by accounting for the effect of the boulders that appeared on the post-impact images because the crater rim profiles derived from the DEMs might fail to detect these new boulders. According to this crater rim profile, the thickness of the ejecta deposits at TD2 were estimated to be between 1.0mm to 1.8cm.

The 48 boulders in the post-impact image could be traced back to their initial positions in the pre-impact image, and it was found that the 1m-sized boulders were ejected several meters outside of the crater. They were classified into the following four groups according to their motion mechanisms: 1. excavation flow, 2. pushed by falling ejecta, 3. surface deformation dragged by the slight movement of the Okamoto boulder, and 4. seismic shaking caused by the SCI impact itself. In all groups, the motion vectors of these boulders seemed to radiate from the crater center.

The 169 new boulders ranging from 30cm to 3m in size were found only in the post-impact images, and they were distributed up to ~40m from the crater center. The histogram of the number of new boulders was studied in each radial width of 1m at a distance of 9-45m from the crater center, with the maximum number of boulders being found at a distance of 17m. Beyond 17m, the number of boulders decreased in accordance with the increase in distance from the crater center.

To investigate this further, a correlation coefficient evaluation between the pre- and post-impact images was carried out. It was discovered that the low cross-correlation coefficient region outside the SCI crater has an asymmetric structure, which is very similar to the area around the impact point where ejecta were deposited (Arakawa et al., 2020).

Based on a template matching method using the correlation coefficient evaluation, the boulder displacements with cross-correlation coefficients above 0.8 were derived with a resolution of ~1cm. This indicated that these displacements could be caused by the seismic shaking.

Boulders were moved by more than 3cm in the area close to the SCI crater. This disturbance spans an area up to 15m from the impact, with the motion vectors radiating out from the crater center. Disturbed areas that were displaced by 10cm still exist in the regions farther than 15m from the center, however they appeared as patches of a few meters in size and were distributed randomly. Furthermore, the direction of these motion vectors in the distant regions was almost random and there was no clear evidence indicating the radial direction from the crater center.

Displacements larger than 3cm were detected within a 15m distance with a probability of more than 50%, and between 15 m and 30 m with a probability of approximately 10%. Therefore, Arakawa et al. propose, in accordance with Matsue et al. (2020)'s experimental results, that the seismic shaking caused most of the area's boulders to move at a maximum acceleration 7 times larger than Ryugu's surface gravity (gryugu).

Furthermore, they also discovered that the impact moved boulders at a maximum acceleration of between 7gryugu and 1gryugu in about 10% of the area. It is hoped that these results will inform future numerical simulations of small body collisions, as well as planetary missions involving artificial impacts.

Research Reports: An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime and Measurements of seismic waves induced by high-velocity impacts: Implications for seismic shaking surrounding impact craters on asteroids


Related Links
http://www.kobe-u.ac.jp/en/
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
NASA's OSIRIS-REx spacecraft goes for early stow of asteroid sample
Tucson AZ (SPX) Oct 27, 2020
NASA's OSIRIS-REx mission is ready to perform an early stow on Tuesday, Oct. 27, of the large sample it collected last week from the surface of the asteroid Bennu to protect and return as much of the sample as possible. On Oct. 22, the OSIRIS-REx mission team received images that showed the spacecraft's collector head overflowing with material collected from Bennu's surface - well over the two-ounce (60-gram) mission requirement - and that some of these particles appeared to be slowly escaping fro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NSF and CASIS select five transport phenomena projects for flight to ISS

Cygnus delivers slew of research programs to Space Station

NASA to commercialize Near-Earth communications services

Virgin Galactic hires two new pilots

IRON AND ICE
UB awarded $8.5 million to improve 'hybrid' space rockets

ABL Space Systems performs integrated stage test of the RS1 launch vehicle

All solid motors for Vega-C complete qualification tests

NASA refueling mission completes second set of robotic tool operations in space

IRON AND ICE
Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

IRON AND ICE
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

IRON AND ICE
SpaceX launches public beta test of Starlink Internet service

Budding space entrepreneurs wow industry experts

ESA Masterclass full series: Leadership at Mission Control

Start of the production of the Skylark Constellation

IRON AND ICE
D-Orbit announces successful ORIGIN mission

Rad-Hardened motor controller consolidates essential functions into a single chip

Big data firm Palantir working with US on vaccine effort

NanoAvionics goes hyper-spectral

IRON AND ICE
Microbial diversity below seafloor is as rich as on Earth's surface

Data reveals evidence of molecular absorption in the atmosphere of a hot Neptune

AI and photonics join forces to make it easier to find 'new Earths'

Smile, wave: Some exoplanets may be able to see us, too

IRON AND ICE
NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.