24/7 Space News
WATER WORLD
Artificial sweetener as wastewater tracer
Tracing the Journey: Chemical compounds, both natural and man-made, reveal the story of water's interactions with the environment through environmental tracers.
Artificial sweetener as wastewater tracer
by Staff Writers
Vienna, Austria (SPX) Feb 09, 2023

Acesulfame is a sweetener in sugar-free drinks and foods. As it cannot be metabolised in the human body, the sweetener ends up in wastewater after consumption and remains largely intact even in sewage treatment plants. A new study by the University of Vienna shows that the persistence of the sweetener varies with temperature as the concentration of the sweetener in wastewater varies with the seasons. The environmental geosciences team analysed how groundwater flows can be traced based on these seasonal fluctuations. Since residues of the sweetener end up in drinking water, acesulfame serves as an indicator of the origin and composition of our drinking water. The study has now been published in the journal Water Research.

The sugar substitute acesulfame is one of the most commonly used sweeteners in Europe. It is almost 200 times sweeter than sugar and temperature-stable, making it suitable for sugar-free baking and for sweetening most diet lemonades. Because the human body does not metabolise the substance, it ends up in wastewater when consumed in large quantities and remains there even after treatment, but in fluctuating concentrations. The new study by the University of Vienna shows that the substance is broken down to varying degrees over the year depending on the temperature.

"For a long time, it was assumed that the potassium salt of acesulfame is not degraded at all in wastewater treatment plants. This is still true, but only in the cold season," explains Thilo Hofmann, deputy head of the Centre for Microbiology and Environmental Systems Science at the University of Vienna. "There were already initial indications that at least partial biodegradation takes place in summer. We can prove this in our study and systematically show for a longer period of time how the concentration of the sweetener in the water changes with the seasons."

Sweetener acesulfame: indicator for the flow paths of wastewater treated in sewage treatment plants
Acesulfame is a widely used indicator of wastewater discharges into surface waters and groundwater: since this sweetener is not completely degraded both in wastewater treatment plants and in the environment - after it has been discharged into water bodies with the treated wastewater - a detection of the substance in water indicates that and how much treated wastewater has entered groundwater, rivers or lakes.

"If you follow the traces of the substance, you can ultimately trace flow paths of the wastewater and its mixing with groundwater," Hofmann explains. With the knowledge of seasonal fluctuations in the degradation of the substance, acesulfame becomes an even more meaningful tracer.

Computer models of groundwater flows enable risk prevention
"Our study shows that the seasonally fluctuating concentration of acesulfame can be used to better visualise and understand the processes in the subsurface, i.e. groundwater flows," says Hofmann. Wastewater components in drinking water can be recorded as well as the flow velocity of the groundwater and the mixing ratios of groundwater and river water. The environmental geoscientists evaluated river and groundwater samples that were collected regularly over eight years in a pre-alpine catchment.

The research team linked their analyses to computer models that calculate water flows in the subsurface. "Such computer models are the key to risk prevention, because they can be used to understand how much river water and how much groundwater end up in the population's drinking water and how to optimise the operation of waterworks," adds the head of the research group.

Traces of the sweetener end up in drinking water
The sweetener acesulfame thus lays a tracer trail from wastewater to river and groundwater and finally to our drinking water. "The fact that acesulfame is not degraded is basically a good thing for us hydrogeologists, because we can draw valuable information from it," says Hofmann. He adds: "However, this fact also makes us aware of our lifestyle being reflected in the wastewater and thus also in the drinking water: The sugar substitute we consume ends up back in our drinking water - albeit heavily diluted, of course."

Research Report:Seasonal biodegradation of the artificial sweetener acesulfame enhances its use as a transient wastewater tracer

Related Links
University of Vienna
Water News - Science, Technology and Politics

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
WATER WORLD
Swiss native fish in troubled waters
Geneva (AFP) Feb 8, 2023
More than half of Switzerland's native fish species are threatened with extinction or are already extinct within the country's waters, a new assessment showed Wednesday. Out of 71 native fish and jawless fish, 34 are under threat of extinction in Swiss waters, like the critically-endangered European eel, and nine are no longer found within Switzerland, the Federal Office for the Environment (FOEN) said. The study of around 70,000 fish in landlocked Switzerland's rivers and lakes categorised the ... read more

WATER WORLD
NASA's Aerospace Safety Advisory Panel releases 2022 Annual Report

Design a spacesuit for ESA

Setting sail for safer space

NASA names first person of Hispanic heritage as chief astronaut

WATER WORLD
SpaceX to test-fire all 33 Starship booster engines Thursday

Launches of Busek Thrusters push OneWeb constellation towards completion

SpaceX launches Hispasat's Amazonas Nexus communication satellite

Poland's SatRev signs on for future Virgin Orbit flights

WATER WORLD
Preparing to drill Dinira: Sols 3737-3738

Mars Helicopter at Three Forks

Searching for a Drill Site Near Encanto: Sols 3735-3736

Enchanting Encanto Calls: Sols 3732-3734

WATER WORLD
China's Deep Space Exploration Lab eyes top global talents

Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

WATER WORLD
OneWeb and Kazakhstan National Railways to work together

Sidus Space closes public offering

Iridium GO exec redefines personal off-the-grid connectivity

ATLAS works with AWS to advance federated network and expand ground station coverage

WATER WORLD
High efficiency mid- and long-wave optical parametric oscillator pump source and its applications

Automating the math for decision-making under uncertainty

Understanding laser accelerated electron radiation through terahertz emissions

Turkey's once mighty developers under fire after quake

WATER WORLD
Researchers focus AI on finding exoplanets

A nearby potentially habitable Earth-mass exoplanet

Two nearby exoplanets might be habitable

Will machine learning help us find extraterrestrial life

WATER WORLD
SwRI models explain canyons on Pluto moon

NASA's Juno Team assessing camera after 48th flyby of Jupiter

Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.