. 24/7 Space News .
EARTH OBSERVATION
Artificial intelligence breakthrough gives longer advance warning of ozone issues
by Staff Writers
Houston TX (SPX) Jun 25, 2021

University of Houston Professor Yunsoo Choi and doctoral student Alqamah Sayeed study atmospheric data.

Ozone levels in the earth's troposphere (the lowest level of our atmosphere) can now be forecasted with accuracy up to two weeks in advance, a remarkable improvement over current systems that can accurately predict ozone levels only three days ahead.

The new artificial intelligence system developed in the University of Houston's Air Quality Forecasting and Modeling Lab could lead to improved ways to control high ozone problems and even contribute to solutions for climate change issues.

"This was very challenging. Nobody had done this previously. I believe we are the first to try to forecast surface ozone levels two weeks in advance," said Yunsoo Choi, professor of atmospheric chemistry and AI deep learning at UH's College of Natural Sciences and Mathematics. The findings are published online in the scientific journal, Scientific Reports-Nature.

Ozone, a colorless gas, is helpful in the right place and amount. As a part of the earth's stratosphere ("the ozone layer"), it protects by filtering out UV radiation from the sun. But when there are high concentrations of ozone near earth's surface, it is toxic to lungs and hearts.

"Ozone is a secondary pollutant, and it can affect humans in a bad way," explained doctoral student Alqamah Sayeed, a researcher in Choi's lab and the first author of the research paper. Exposure can lead to throat irritation, trouble breathing, asthma, even respiratory damage. Some people are especially susceptible, including the very young, the elderly and the chronically ill.

Ozone levels have become a frequent part of daily weather reports. But unlike weather forecasts, which can be reasonably accurate up to 14 days ahead, ozone levels have been predicted only two or three days in advance - until this breakthrough.

The vast improvement in forecasting is only one part of the story of this new research. The other is how the team made it happen. Conventional forecasting uses a numerical model, which means the research is based on equations for the movement of gasses and fluids in the atmosphere.

The limitations were obvious to Choi and his team. The numerical process is slow, making results expensive to obtain, and accuracy is limited. "Accuracy with the numerical model starts to drop after the first three days," Choi said.

The research team used a unique loss function in developing the machine learning algorithm. A loss function helps in optimization of the AI model by mapping decision to their associated costs. In this project, researchers used index of agreement, known as IOA, as the loss function for the AI model over conventional loss functions. IOA is a mathematical comparison of gaps between what is expected and how things actually turn out.

In other words, team members added historical ozone data to the trials as they gradually refined the program's reactions. The combination of the numerical model and the IOA as the loss function eventually enabled the AI algorithm to accurately predict outcomes of real-life ozone conditions by recognizing what happened before in similar situations. It is much like how human memory is built.

"Think about a young boy who sees a cup of hot tea on a table and tries to touch it out of curiosity. The moment the child touches the cup, he realizes it is hot and shouldn't be touched directly. Through that experience, the child has trained his mind," Sayeed said.

"In a very basic sense, it is the same with AI. You provide input, the computer gives you output. Over many repetitions and corrections, the process is refined over time, and the AI program comes to 'know' how to react to conditions that have been presented before. On a basic level, artificial intelligence develops in the same way that the child learned not to be in such a hurry to grab the next cup of hot tea."

In the lab, the team used four to five years of ozone data in what Sayeed described as "an evolving process" of teaching the AI system to recognize ozone conditions and estimate the forecasts, getting better over time.

"Applying deep learning to air quality and weather forecasting is like searching for the holy grail, just like in the movies," said Choi, who is a big fan of action plots.

"In the lab, we went through some difficult times for a few years. There is a process. Finally, we've grasped the holy grail. This system works. The AI model 'understands' how to forecast. Despite the years of work, it somehow still feels like a surprise to me, even today."

Before success in the laboratory can lead to real-world service, many commercial steps are ahead in before the world can benefit from the discovery.

"If you know the future - air quality in this case - you can do a lot of things for the community. This can be very critical for this planet. Who knows? Perhaps we can figure out how to resolve the climate change issue. The future may go beyond weather forecasting and ozone forecasting. This could help make the planet secure," said Choi.

Sounds like a happy ending for any good action story.

Research paper


Related Links
University Of Houston
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Rising greenhouse gases threaten Arctic ozone layer
Washington DC (UPI) Jun 23, 2021
Extremely low winter temperatures in the atmosphere over the arctic are becoming more frequent and more extreme because of climate patterns associated with global warming, a study published Wednesday by Nature Communications found. In addition, the extremely low temperatures are causing reactions among chemicals humans pumped into the air decades ago, leading to further reductions in the ozone layer of the Earth's atmosphere. The findings call into question the commonly held assumption t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Sierra Space and Rhodium Scientific exploring viability of science operations on Sierra Space Life Habitat

Orchids in orbit: Seeds tested in space

Israel 'start-up nation' era may be ending: new figures

NASA's space communications user terminal

EARTH OBSERVATION
Turkey invites Russia to take part in construction of country's spaceport

Boost for UK space sector as new facility offers cheaper and greener rocket testing

Debris from carrier rocket drop safely

NASA, SpaceX Update Crew Launch and Return Dates

EARTH OBSERVATION
Mars rover to move south after testing

China reveals photos taken by Mars rover

Perseverance Rover Begins Its First Science Campaign on Mars

NASA's Mars helicopter Ingenuity flies for 7th time

EARTH OBSERVATION
Successful program ignited by modest spark of an idea

Astronauts board China's new space station for first time

Fresh group of astronauts readying for orbit

First astronauts arrive at China's space station

EARTH OBSERVATION
South Australia startups target international space opportunities

SES Renews Long-Term Relationship with Comcast Technology Solutions

Voyage 2050 sets sail: ESA chooses future science mission themes

MIT study compares the four largest internet meganetworks

EARTH OBSERVATION
Compact quantum computer for server centers

PROTEUS transitions to Marine Corps Warfighting Lab

Ultralight material withstands supersonic microparticle impacts

US Navy tests warship's metal with megablast

EARTH OBSERVATION
Some seafloor microbes can take the heat: And here's what they eat

SpaceML.org aims to accelerate AI application in space science and exploration

Liquid water on exomoons of free-floating planets

Star's death will play a mean pinball with rhythmic planets

EARTH OBSERVATION
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.